JKAU: Eng. Sci., Vol. 28 No. 1, pp: 3 - 18 (1438 A.H./ 2017 A.D.)
Doi: 10.4197/Eng. 28-1.1

Satisfiability in Big Boolean Algebras via Boolean-Equation Solving
Ali M. Ali Rushdi and Waleed Ahmad

Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz
University, P. O. Box 80204, Jeddah 21589, Saudi Arabia

arushdi@kau.edu.sa

Abstract. This paper studies Satisfiability (SAT) in finite atomic Boolean algebras larger than the two-valued one B2, which are
named big Boolean algebras. Unlike the formula g(X) in the SAT problem over Ba, which is either satisfiable or unsatisfiable, this
formula for the SAT problem over a big Boolean algebra could be unconditionally satisfiable, conditionally satisfiable, or unsatisfiable
depending on the nature of the consistency condition of the Boolean equation {g(X) = 1}, since this condition could be an identity, a
genuine equation, or a contradiction. The paper handles this latter SAT problem by using a conventional method and a novel one for
deriving parametric general solutions, and subsequently utilizing expansion trees for generating all particular solutions of the
aforementioned Boolean equation. Each of these two methods could be cast in pure algebraic form, but becomes much easier to
visualize and comprehend when presented via the natural map of a big Boolean algebra, which (for historical reasons) is called the
variable-entered Karnaugh map (VEKM). In the classical method, the number of parameters used is minimized and compact solutions
are obtained. However, the parameters belong to the underlying big Boolean algebra. By contrast, the novel method does not attempt
to minimize the number of parameters used, as it uses independent parameters belonging to the two-valued Boolean algebra B for
each asserted atom in the Boole-Shannon expansion of the formula g(X). Though the method produces non-compact expressions, it is
much quicker in generating particular solutions. The two methods are demonstrated via two detailed examples.
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1. Introduction problems are mutually reducible to one another
in linear time, a SAT solver can be used to solve
other NP-complete problems at a modest extra
cost. The literature abounds with sophisticated
algorithms!*'3) that are designed to deal with
large or gigantic SAT problems. Most of these
algorithms were initiated with and influenced by

the celebrated Davis-Putnam search strategy*>!.

Propositional or (two-valued) Boolean
Satisfiability (SAT) is the problem of deciding
whether a propositional logic formula g(X) can
be satisfied (equated to 1) given suitable
propositional value assignments to the variables
X of the formula. The formula is satisfiable if
the solution set of the Boolean equation

{g(X) = 1} is non-empty, and the formula is
unsatisfiable if that solution set is empty!!-!,
For n variables, there are 2" possible truth
assignments to be checked. In fact, the SAT
problem is the first problem that has been
proven to be NP-complete. This means that it is
a highly intractable problem, and unless P = NP,
all SAT algorithms (and all algorithms for any
NP-complete problem) require worst-case
exponential time. Since all NP-complete

When studying the SAT problem, it is
typically assumed that the pertinent formula is
given as a Conjunctive Normal Form (CNF),
i.e., as a formula consisting of a conjunction
(ANDing) of clauses (alterms), each of which
consists of a disjunction (ORing) of literals,
where a literal is a variable in un-complemented
form X; or in a complemented form X;. A CNF
is also known in digital-design circles as a
product-of-sums (pos) expressionl!> % 16171 The
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dual to a CNF is the Disjunctive Normal Form
(DNF) which is a formula consisting of a
disjunction (ORing) of products (terms), each of
which consisting of a conjunction (ANDing) of
literals. A DNF is also known as a sum-of-
products (sop) expression! % 16 171 A special
case of an sop expression is a disjoint
(orthogonal) sop expression, which is one in
which the ANDing of any two products is 0.

The formula (X; V X,V X3) A (X, V
X, V X3) can be cited as a simple example of
a satisfiable Formula. It has, in fact, several
satisfying truth assignments, namely when
{X3 = 1 with X; and X, being unspecified or
don't cares} and when {X3 = 0 with X; being
the complement of X,}. These are the six
primitive assignments {X; =0, X, =0, X3 =
1}, {Xl = 0, XZ = 1, X3 = 1}, {Xl = 1, XZ =
0,X;=1L{X, =1, X, =1, X3 =1}, {X; =
0,X, =1,X3=0}and {X; = 1,X, =0, X3 =
0}. It is easy to visualize that the 8-cell
Karnaugh map for the aforementioned formula
is 0-entered for the cell {X; =0, X, =0, X5 =
0} representing the clause or Maxterm (X; V
X, V X3), and also for the cell {X; =1, X, =
1, X5 = 0} representing the clause or Maxterm
(X, V X, V X3), and hence this map is 1-
entered for the remaining six cells. A Simple
Example of an unsatisfiable formula is the
formula (X; A X;). Likewise, the formula
X, VX, VX)OA(X, VXLV X)) is
unsatisfiable. Any formula containing all the
Maxterms of a function is identically equal to 0,
and hence is unsatisfiable. An example of such
a formula is:

Xy VX IAN(XL VEDIANEK VEK,)
ACX, V Xy)

If one or more Maxterms are dropped of this
formula, it becomes satisfiable. For example,
If we drop the clause ( X; V X, ), we obtain

(X1 VXIA(XV X)AX VX)),
which is satisfiable by {X; = 0, X, = 0}.

There are many extensions of SAT
which are problems that either use the same
algorithmic techniques as used in SAT, or use
SAT as a core engine. These include
Satisfiability = Modulo  Theories  (SMT),
maximum satisfiability (MaxSAT), minimum
satisfiability (MinSAT), model counting (SAT
degree), and Quantified Boolean Formulas
(QBF)!'81. Applications of SAT include many
hard combinatorial problems such as problems
that arise in formal verification, artificial
intelligence, operations research, biology,
cryptology, data mining, machine learning,
mathematics, model-checking of finite-state
systems, design debugging, inference in
bioinformatics, knowledge-compilation,
software model checking, software testing
package, management in software
distributions, checking of pedigree
consistency, test-pattern generation in digital
systems, design debugging and diagnosis,
identification of functional dependencies in
Boolean functions, technology-mapping in
logic  synthesis, and  circuit  delay
computation!'8],

While most algorithms, extensions and
applications of the Boolean satisfiability
problem are in the domain of two-valued crisp
logic, there have been a few publications
dealing with the satisfiability problem in
multi-valued logic"®! and fuzzy logic?® 2!, To
the best of our knowledge, no work on the
satisfiability problem over big Boolean
algebras has, so far, appeared in the open
literature.

The aim of this paper is to handle the
SAT problem for the formula g(X) over an
arbitrary or big Boolean algebral®* 23! by using
a conventional method and a novel one for
deriving parametric general solutions of the
Boolean equation {g(X) = 1}, and
subsequently utilizing expansion trees for
generating all particular solutions of the
aforementioned Boolean equation. These
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methods could be cast in pure algebraic
form?*?7l,  but become much easier to
visualize and comprehend when presented via
the natural map of a big Boolean algebra,
which (for historical reasons) is called the
variable-entered Karnaugh map (VEKM)?*: 8-
3 In the classical method, the number of
parameters used is minimized and compact
solutions are obtained[?> 23 30 38411 However,
the parameters belong to the underlying big
Boolean algebra. By contrast, the novel
method does not attempt to minimize the
number of parameters used, as it uses
independent parameters belonging to Bz for
each asserted atom in the Boole-Shannon
expansion of the formula g(X). Though the
method produces non-compact expressions, it is
much quicker in generating particular solutions.

The organization of the rest of this paper
is as follows: Section 2 lists certain useful
features of big Boolean algebras, and clarifies
important aspects of the SAT problem over
them. Section 3 reviews classical parametric
general solutions of big Boolean equations.
This section makes the paper self-contained as
it sets the stage for introducing the novel
method for parametric general solutions in
Section 4. Both sections explain how
parametric solutions can be used to generate all
particular solutions, which are all the satisfying
instances of the SAT problem. Much work
might be saved if all that is required is a single
particular solution, ie., a single satisfying
instance of the SAT problem. The two methods
might be presented in a purely algebraic
fashion by using the Boole-Shannon expansion
to handle the discriminants of g(X)!*’. An
equivalent (albeit more insightful) scheme is
adopted herein by using the natural map of
g(X)?. The two methods are demonstrated
via two examples that illustrate the two
prominent possible outcomes when the formula
g(X) is unconditionally  satisfiable or

conditionally satisfiable. Section 5 concludes
the paper.

2. Satisfiability over Big Boolean Algebras

A Boolean algebra is a quintuple B = (B,
v, A, 0, 1) in which B is a set, called the
carrier; v and A are binary operations on B,
and the zero (0) and unit (1) elements are
distinct members of B, with certain postulates
on commutativity, distributivity, identities and
complementation  being  satisfied. = The

following facts about a Boolean algebra can be
deduced[22-26- 42-451.

1. Every element X of B has a unique
complement X .

2. There is a partial-order or inclusion
(<) relation on B that is reflexive, anti-
symmetric, and transitive.

3. A Boolean algebra B enjoys many

useful properties such as associativity,
idempotency, absorption, involution,
consensus and duality.

4. A Boolean algebra B is a

complemented distributive lattice whose 0 and
1 values are distinct.

5. A nonzero element Z of B is said to be
an atom of B if and only if for every X € B, the
condition X < Z implies that X=Z or X=0.

6. Every finite Boolean algebra B is
atomic, i.e. for every nonzero element X € B,
there is some atom Z such that Z < X. This
viewpoint rejects the case {0 = 1} as a
contradiction, and ignores the possibility of an
atomless algebra B; in which {0 = 1} is
accepted!

7. Examples of Boolean algebras
include the algebra of classes (subsets of a
set), the algebra of propositional functions, the
arithmetic Boolean algebra, the switching or
two-element Boolean algebra, as well as big
Boolean algebras.
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8. Boolean algebras with the same
number of elements are isomorphic.

9. Every finite Boolean algebra B has
2M elements, where M is the cardinality of
(number of elements in) the set of atoms of B.
Following Brown!??), we distinguish Boolean
algebras larger than the two-valued one (the
switching algebra B2, M =1) by naming them
big Boolean algebras.

10. A Boolean function f B" — B,
where B is a carrier of 2 elements, is
uniquely determined by a truth table or a
Karnaugh map partially representing f for the
restricted domain {0, 1}" which is a strict
subset of the complete domain B".

11. The elements of B are named in
terms of a minimum number of abstract
variables or generators Y = (Y1, Y2, ..., Ym),
with the elements of B taken as the elements
of the free Boolean algebra FB(Y) = FB(1,
Y2, ..., Ym) which is isomorphic to the
Boolean algebra of switching functions of m
variables, and possesses M = 2™ atoms and
2M elements. The smallest big Boolean algebra
B4 has a single generator a, two atoms a and a,
and 4 partially-ordered elements (0 < {@,a} <
1) that are the 4 switching functions of one
variable. Figure 1 wuses a 4-dimensional
hypercube lattice to visualize the big Boolean
algebra Bie¢ which has two generators a and b,
four atoms ab,ab,ab andab, and 16

partially-ordered elements that are the 16
switching functions of 2 variables. Figure 2
demonstrates a cubic lattice that represents the
big Boolean algebra Bs which still has two
generators a and b, but only three atoms ab,
ab, and ab, and 8 partially-ordered elements.
Note that Bs in Fig. 2 can be obtained from B¢
in Fig. 1 by nullifying its atom ab. More
information on the lattice constructions in Fig.

1 and 2 is available in Rushdi and Amashah(**
30]

Unlike the SAT problem over B2, where
a formula g(X) is either satisfiable if the
solution set of the Boolean equation {g(X) =
1} is non-empty, or unsatisfiable if that solution
set is empty, the SAT problem over a big
Boolean algebra has three possibilities:

e The formula g(X) is unconditionally
satisfiable if the conmsistency condition of the
Boolean equation {g(X) = 1} is an identity. In
this case, g(X) is satisfied by every particular
solution of the Boolean equation, and the
underlying Boolean algebra remains intact.

eThe formula g(X) is conditionally
satisfiable if the consistency condition of the
Boolean equation {g(X) = 1} is a genuine
consistent equation, whose solutions nullify
some atoms of the underlying Boolean algebra,
thereby leading to its collapse to a smaller
algebra. In this case g(X) is satisfied (subject
to the consistency condition) by every
particular solution of the Boolean equation
over the collapsed Boolean algebra.

e The formula g(X) is unsatisfiable if the
consistency condition of the Boolean equation
{g(X) = 1} is a contradiction {1 = 0}. In this
case, the solution set of the Boolean equation
{g(X) =1} is empty, and all atoms of the
underlying Boolean algebra are nullified,
thereby leading to its collapse to a single point.
This happens when the function g(X) is
identically equal to 0, e.g., when g(X) is
actually a conjunction of all Maxterms (even in
disguise). A simple example of such a function
in the big Boolean algebra Bsss3s with elements
in FB(a,b,c,d) is:

9gXy, Xo)=(@ Vv Xy vV Xz )N

(avX; vX,)) AbVvX, VX,)A
(bvX,VX)A(VEV X)A
(cvXy, VX, )Ad VX, VX,)A

(d v X, Vv X,) (D)

The SAT problem over a big Boolean
algebra is handled herein by solving a Boolean
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equation. There are three main types of
Boolean-equation solutions, which can be
identified as subsumptive general solutions!?*
25-29. 31341 " parametric general solutions!?% 23 2
26, 30, 31, 38411 and particular solutions. In a
subsumptive general solution, each of the
variables is expressed as an interval based on
successive  conjunctive  or  disjunctive
eliminants of the underlying function g(X). In
a classical parametric general solution, each of
the variables is expressed via arbitrary
parameters, i.e., via freely chosen elements of
the underlying Boolean algebra. A particular
solution is an assignment from the underlying
Boolean algebra to every pertinent variable
that makes the Boolean equation an identity.
We are going to present a novel parametric
general solution which wuses independent
parameters belonging to B2 for each asserted
atom in the Boole-Shannon expansion of the
formula g(X). This novel method will be seen
to be a very convenient way of listing all
particular solutions.

3. Classical Parametric General Solutions of
Big Boolean Equations

In the classical method of parametric
solution of big Boolean equations, the
minimum number of parameters is sought.
Though this method is well established!?> 23 25:
26,30, 31, 38-41] ' we review it herein to make the
paper self-contained, and to set the stage for
the next section. Brown!??l proved that n
parameters are sufficient to construct a
parametric general solution of an n-variable
Boolean equation g(X) = 1, where g(X):
B"—>B. He proposed a procedure for
constructing such a solution using the fewest
possible parameters, pi, p2, ..., pk, Which are
elements of B, where k < n. Rushdi and
Amashah!?* 3% adapted this procedure of
Brown into a VEKM procedure as follows:

aVvbh 1
a 4 aVvb 4
b avb
ab GHW
a+tb avb
ab 4

0 db%

Fig. 1. A hypercube lattice indicating the partial ordering
among the 16 elements of Bie.

atb=aVvb (@avb)y=1

0=ab

ab=(a— b)

Fig. 2. The lattice in Fig. 1, collapsed under the condition
ab = 0 so as to represent Bs.

(a) Construct a VEKM
representing g(X). Such a construction is
achieved via a  Boole-Shannon tree
expansion!*® 471 If the original Boolean
equation is in the dual form f(X)= 0, then
construct a VEKM for f(X), and complement
it cell-wisel? *! to obtain a VEKM for

f&X) = gX).

(b) Expand the entries of the VEKM of
g(X) as ORing of appropriate atoms of the
Boolean carrier B, or equivalently as a
minterm expansion of the free Boolean algebra
representing B. If atom 1 (1 <1 < 1) of B
appears A; times in the cells of this VEKM,
then the number of particular solutions N is
given by
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N = [li-1 A;. )

(c) If certain atoms of B do not appear

at all in any cell of the VEKM for g(X), then

these atoms must be forbidden or nullified.

Such a nullification constitutes a consistency
condition for the given Boolean equation.

(d) Construct a VEKM for an associated
auxiliary function G(X,p). This VEKM is
deduced from that of g(X) through the
following modifications:

(d1) Each appearance of an entered
atom in the VEKM of g(X) is ANDed with a
certain element of a set of orthonormal tags of
minimal size. An orthonormal set consists of a
set of terms Ti, 1 =1, 2, ..., m, which are both
exhaustive (T1 v T2 v ...v. Tm = 1) and
mutually exclusive (Ti A Tj=0for1 <i1<j<
m ). The terms Ti are products of parameters
pr, 1 < 1r < k, in uncomplemented or
complemented form. The set of tags for
different atoms share the same parameters.
The number of parameters k is minimized and
is given by the ceiling of the base-2 logarithm
of the maximum number of appearances A; of
an atom,

ko= fmax; (log, 4)] = flog, (max; A)]

(d2) Each nullified atom is entered as a
don’t care in all the VEKM cells of the
associated auxiliary function G (X, p).

(¢) The parametric solution is

X;= The sum (ORing) of the entries in
the 2™! cells constituting ( X; = 1), i.e. in half
of the VEKM in which X; is asserted ), (1 =1,
2, ...,n ), namely

Xi =Vivefov;=1) G(Y, p). 4)

() Apply an appropriate VEKM
minimization procedure** to recast (4) in a
minimal form.

Example 1

We apply the aforementioned technique
to the function g;(X): B3 — B, given by the
natural map in Fig. 3. This natural map is
typically called a Variable-Entered Karnaugh
Map (VEKM)[?3 2834, 46-99] with map variable
X = {X;, X,, X3} and with an entered ‘variable’
that is not really a variable but is the generator
a of the wunderlying Boolean algebra
B,={0,1,a,a}. The map can be read [38, 39]
to express g, (X) in pos (CNF) form as:

GX) =@V vE)A(avX)A(XVE V),

(%)
or in sop (DNF) form as
gl(X) s a)?l \Y a)?z \ X1X3 \ X2X3 (6)

The map in Fig. 3 indicates that g; (X) is
unconditionally satisfied. In fact, the map
displays  three  satisfying  assignments
[X1 X2 X3] =[011], [111], and [10 1], for
which g;(X) = 1. Other possible satisfying
assignments can be obtained if one constructs
the complete Function Table of g,(X): B3 —
B,, which has a larger domain of B3 =
{0,1,ad,a}® consisting of 43= 64 cells. This
larger domain includes the 8-cell domain
{0,1}3 of the map in Fig. 3. Construction of
this function table constitutes a brute force
(exhaustive and time-consuming) method for
obtaining not only the solution set of the
equation {g;(X) = 1} but also the solution set
of the inequation {g;(X) # 1)}, which is the
union of the solution sets of the equations
{9:(X) =0}, {g1(X) =a}, and {g;(X) =
a }. To give the reader a glimpse of the nature
of a function table, we include the table for
g1(X) in Fig. 4. The availability of such a table
should not defeat the purpose of our present
equation-solving strategy, simply because the
construction of such a table is usually
prohibitively tedious for any non-toy problem
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Steps of our proposed solution are
illustrated by Fig. 5 and 6. In Fig. 5, the entries
of the map for the function g, (X) in Fig. 3 are
expanded in terms of the two atoms {a,a } of
B,, which happen to be the minterms of FB(a).
In Fig. 6, the 7-clement set of the three-
parameter orthonormal tags (p;9,P3, P1P2 P3»
D1D2P3, P1P2D3> D1 DP2P3, P1P2D3»> P1Dz) 18
used for atom a and the 3-element set of the
two-parameter  orthonormal tags (p,ps,
D4, P2p3) is used for atom a. Note that the two
atoms share the two parameters p, and p5, and
the number of particular solutions is 7*3 = 21.
The final parametric solution is given by!*!]

X1= (D1 D2 VP1P3 V apip2P3) VvV a(pz V ps)

(7a)
Xo=@1Dz V P1P3 VP2P3)V a(p2 V P3)
(7b)
X3= p1 VDp2p3 Va. (7¢)

together with the consistency condition
0=0. (7d)

Note that the parameters {p, p, ps}
belong to the underlying big Boolean algebra
B,={0,1,a,a}. Particular solutions can be
deduced from the parametric solution (7) via a
three-level quaternary expansion tree®!l, which
traverses a search space of 4° = 64 points
(more than double the cardinality of the
solution set), and is further complicated by the
fact that expansion at a child node is dependent
on earlier expansions at parent nodes. Though
the parametric solution (7) has the advantage of
being of minimum parameters, it is discredited
for the tedious effort it needs to produce
particular solutions.

Example 2

Now consider the function g,(X):
B3, — B¢ given by its natural map in Fig. 6,
where B4 = FB(a,b) is displayed as a
complemented distributive lattice in Fig. 1.

146, 47

The map can be rea I'to express g,(X) in

pos (CNF) form as:
g2(X) = (X;) A (E v Xs)/\ (avX3)A

(aY EvXRIALBY L VK] )

or in sop (DNF) form as:
g.(X) = abX,X; v abX,X; vV bX, X, X3 V
aX,1X, X3
9

The map in Fig. 7 indicates that g, (X) is
not unsatisfiable (since it is not identically 0).
Figure 7 can be used also to deduce that g, (X)
is not unconditionally satisfiable, either. In fact,
Fig. 7 tells us that only three of the four atoms
of the underlying B;¢ algebra, namely
ab, ab and ab, appear in the entries of the
map of Fig. 8. Their appearances are 2, 2, and
2, respectively, which means that the number
of particular solutions is 2*2*2 = 8. The fourth
atom ab does not appear anywhere in Fig. 7.
Its nullification constitutes the consistency
condition.

ab =0, (10a)

which causes the underlying Boolean
algebra B, to collapse to B; shown in Fig. 2. In
this case, a single parameter p is needed so as
to produce a 2-element orthonormal set {p, p}.
The 2 elements of this set are used to tag the 2
appearances of each of the asserted atoms
(ab, ab and ab) as shown in Fig. 8. In addition,
the nullified atom ab is entered don’t-care in
every cell of the map in Fig. 8. Now, this map
represents the auxiliary function G,(Xy, X,, X3; )
associated with g,(X;,X,,X;). Finally the
solution of {g,(X) = 1} is given by:

X, =0, (10b)
X, =bp Vap, (10c)
X;=b Vap. (10d)
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(10 d) belongs to the collapsed Boolean
algebra Bg in Fig. 2.

together with the consistency condition (10a)
given earlier. The single parameter p in (10 b) —

X4
a a 0 a
a
X3 1 1 1
X3
9:(X)
Fig. 3. A natural map representing the Boolean function g (X) in Example 1.
X3/X1 | 0 1 a
0 alal|la]|lal6o Ola|al|O0]|0f|al|a a| a
1 1 a 1 1 1 1 1 a 1 a 1 1 1 1
a a a a a a a a a a a a a a a
a 1 a 1 1 a a 1 a a 0 1 1 1 1
X2 1 a a 0 1 a a 0 1 a a 0 a a

Fig. 4. The function table of 64 cells for the function g (X ) of Example 1. The 8 cells constituting the Karnaugh map of Fig.
3 are shaded.

X1
a a 0 a
] 4 _ _
ava ava ava
X3
 » |
2

91(X)

Fig. 5. Entries of the map for the function g4 (X ) in Fig. 3 expanded in terms of atoms of B 4 or minterms of FB(Q).
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G1(X1, X2, X35 01, P2, P3)

X
1 —
a p1b2P3 apibz P3 0 a p1P2D3
a p1p2P3 apip2 apip2p3 Vv
X3 b1iP2p3a Vv ap,p; v ap, ap2p3
X,

Fig. 6. Each appearance of an entered atom in Fig. 5 ANDed with an element of a set of orthonormal tags. The parameters used
are shared by the two atoms.

X3
b ab ab a
X, 0 0 0 0
L ¥
g2(X)

Fig. 7. A natural map representation of the Boolean function g, (X ) in (8) or (9).

the atom @b that appears nowhere in Fig. 6 is entered don't care.

X3
]
abp v abp v abp v abp v abpvabpV
d(ab) d(ab) d(ab) d(ab)
X || d(ab) d(ab) d(ab) d(ab)
X,
G2 (X1, X2, X35 p)

Fig. 8. Each appearance of an entered atom in Fig. 6 is ANDed with a certain element of the set of orthonormal tags { D, D } while
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4. Novel Parametric General Solutions
of Big Boolean Equations

The procedure in Sec. 3 is modified
herein by disallowing any sharing of
parameters among atoms, ie. using an
independent parameter for each atom. This
modification is implied in the shortcut!?? 23 30]
used to obtain specific instances of particular
solutions. It results in a dramatic increase in
the number of parameters needed from k given
by ( 3) to K given by:

K = ¥ [logz A;]. (1)

However, instead of demanding
parameters that exhaust all elements of the
underlying Boolean algebra, each element of
the new set of independent parameters is now
required to span only the two values 0 and 1,
i.e., the elements of B,.

Example 1 (Revisited)

When we apply our novel method
to g,(X) given by (5) or (6) and represented
by either Fig. 3 or Fig. 5, we obtain the
associated function
Gy'(X1, X2, X351, 02,03, P4 ps) in Fig. 9,
which is similar to the corresponding function
G, (X1, X5, X3; 01,02, 03) iIn Fig. 6, with the
sole exception that while the tags for the atom
a are kept intact as functions of p,, p, and ps,
the tags for the other atom a retain their form
but become functions of new parameters
P4 and ps replacing p, and ps.
Correspondingly, the solution of { g, (X) = 1}
becomes:

X1=a (1 D2 V P1P3 vV P1P2D3)V @ (P4 V Ps)

(12a)
Xo=a (1 P2VP1 D3V P2 P3)Va(PsVPs)(12D)
Xz=a(p1 Vpzp3) Va. (12¢)

together with the consistency condition:
0=0. (124d)

Here each of the five parameters
P1, P2, P3, P4 and ps now belongs to B, rather
than B,. Equations (12a) - (12¢) can now be
written in matrix form as:

[X; X, X3]=(anCo(a))V (aACo(a))
(13a)

where the vector X7 is a disjunction of two
total contributions (a A Co(a)) and (a A
Co(a)). Here, the contributions Co(a) and
Co(a) are given by:

Co(a)=
[P1 P2V PiP3 VPiP2D3s P1D2V D1 D3V D2 D3 P1VPaps]

(13b)
Co(@ =[psVDs PaVPs 1]  (13¢)

This new solution is definitely more
cumbersome than the earlier one in (7), but it has
the distinctive advantage of allowing a much
quicker way to list all particular solutions.
Instead of a three-level quaternary expansion
tree, we now need a five-level binary tree (which
means a reduction by half of the search space
from 4° = 64 points to 2°= 32 points). However,
we can even do better than that by avoiding the
use of an expansion tree altogether and exactly
targeting the 21 individual particular solutions.
We note that Co(a) is a function of
P1, P2 and p5 only, while Co(a) is a function of
p4 and ps only. We can draw a Karnaugh map
of 3 variables ( and hence 8 cells ) to represent
Co(a), and another map of two variables (and
hence 4 cells) to represent Co(a). However our
original tag sets consist of only 7 and 3 elements,
respectively. So we need map-like structures to
represent these orthonormal tags. Simply, we
need a 7-variable map of variables
P1, P2 and ps with cells p; p, p; and p; P, ps3
combined as p; p, and also a 2- variable map of
variables p, and ps with cells p, ps and p,ps
combined as p;. These map-like structures are
now entered by specific values of (a A Co(a))
and (a A Co(@)) via (13b) and (13c). According
to (13a), a particular solution is the disjunction
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of an arbitrarily-chosen entry in Fig. 10(a) with
an arbitrarily-selected entry in Fig. 10(b). For
example, we can use the entry [a  a a] in the
leftmost cell of Fig. 10(a) ORed elementwise
with the entry [@ @ @] in the leftmost cell in
Fig. 10(b) to produce a specific particular
solution

[a a alv[a a a]l=
[ava ava aval=[1 1 1] (14)

Since any of the 7 cells of Fig. 10(a) can
go with any of the 3 cells of Fig. 10(b), it is
clear that we can produce 7*3 = 21 particular
solutions, as expected. These 21 particular
solutions are listed as groups of 3 (in a map-
like structure similar to that of Fig. 10(a)) in
Fig. 11. Substituting of any of these solutions
into (5) or (6) produces a value of 1 for g, (X).
All of these particular solutions involve either a
or a, except the three solutions [1 1 1],
[0 1 1]and [1 0 1] which were earlier
detected on the Karnaugh map of Fig. 3.

In passing, we note that g,;(X) is
partially symmetric in X; andX,, i.e,
g1(X1, X5, X3) = g1 (X5, X1, X3)PY, Therefore,
if [a, B,v] is a particular solution of {g,(X) =
1} then [S, @, y] is also a particular solution of
it. This observation can be verified for the set
of particular solutions in Fig. 11.

Example 2 (Revisited)

We now apply our novel method to
Example 2. Figure 12 replicates Fig. 8, with
the single parameter p (belonging to Big
collapsed to Bg) replaced by three independent
parameter, p;,p, and p; (belonging to B,)
used in the tags of atoms ab ,ab and ab,
respectively, while the map auxiliary function
G, (X1, X5, X3;0) is replaced by
Gy (X1, X2, X3;P1,P2,03).  Correspondingly,
the solution of {g,(X) = 1} becomes

X; =0, (15a)

X, = bp, Vap,, (15b)
X;=b Vap; =alb Vps), (15¢)
ab = 0. (15d)

Figure 13 lists all 8 particular solutions for
{g»(X) = 1} obtained by assigning independent
binary values to the 3 parameters p,, p, and ps.
Each of these 8 solutions involves some form
(complemented or non-complemented) of the
generator a or the generator b. That is why none
of them was detected by the Karnaugh map of
Fig. 6. Note that if any of the 8 particular
solutions is substituted into (8) or (9) it does not
produce {g,(X) = 1} directly, but it produces
{g,(X) = ab v ab v ab} which reduces to
g>(X) =1 with the aid of the consistency
condition (15d).

l— A |
pP1D2p3a p1D2 P3a 0 p1P2P3a
[ . _ _
X D, D,D3a 5152103_‘1 P1 P24 P1P2P3 Va
L P4Ds V ap, a P4Ps
L X |

G' (X1, X2, X3, 01,02, P3, D1, P5)

Fig. 9. Each appearance of an entered atom in Fig. 5 ANDed with a certain element of a set of orthonormal tags. The parameters

used for different atoms are independent.



14

Ali M. Ali Rushdi and Waleed Ahmad

P1
I |
[0 a a] [a 0 0] [0 a 0]
M [a a a]
P3 [a 0 a] [0 0a] [0 0 0]
I |
b2
a. Total contribution aCo(a) of atom @ to a particular solution [X1 X 2 X3].
Pa
|
[@ G a [@ 0 a [0 @ a]
L ]
Ps
b. Total contribution @ Co(d) of atom @ to a particular solution [X1 Xz Xg].

Fig. 10. Total contributions of atoms @ and @ to a particular solution [X1 X2 X 3] shown as entries in map-like structures
that represent the original orthonormal tags.
[@a 1 1] [l a a [@ 1 a
[@ a I] [l 0 a] [@ a d]
[/ 1 1] [0 1 1] [a a a [0 1 a
[l a I] - - _ -
[a 1 1] [l a ] [@a al] [@ a a]
[1 0 1] [a@ 01] [@ 0 a
[a a 1] [0 al] [0 a a
X1 X; X3]
Fig. 11. A listing of all 21 particular solutions of {gl (X) = 1}in Example 1.
X3
abp; V abp, abp, abp, abp; V abp,
Vv d(ab) Vv d(ab) Vv d(ab) V d(ab)
X d(ab) d(ab) d(ab) d(ab)
1
X>
G (X1, X2, X35 P1, P2, P3)

Fig. 12. The auxiliary function for Example 2 with tags of independent parameters belonging to B 2.
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P1
[0 b b] [0 0 b»] [0 a b] [0 avb b]
[0 b al [0 0 a] [0 a a] [0 avb a]
P3
p2
[X1 X3]

Fig. 13. A listing of all eight particular solutions of { 9> (X ) = 1} subjected to the consistency condition {ab = 0}.

5. Conclusion

This paper has two important
contributions. The paper’s first major
contribution is to propose that the famous
problem of Boolean satisfiability (SAT) be
extended from the two-valued Boolean domain
to cover big Boolean algebras. The new type
of satisfiability may therefore be conveniently
labeled as BigSAT. The paper’s second major
contribution is to find all possible solutions, if
any, of BigSAT by constructing parametric
general solutions of associated Boolean
equations. The conventional method for
constructing such solutions was reviewed and
then superceded by a novel method that can
immediately exhibit all particular solutions.
The paper is, therefore, setting the stage for
solving BigSAT via advanced strategies
similar to those of the good old Davis-Putnam
procedure ¥ and its many successors.

This paper sets the stage for future work
that is more application oriented. We have
already proposed a novel cryptosystem that is
based on the utilization of big Boolean
algebras*®l. The basic idea is to dramatically
extend the search space needed in SAT-based
cryptography. The adversary will not only be
obliged to traverse a search space (that can be
arbitrarily huge), but might end up with

several candidate answers, all of which are
wrong except one. Another sequel of this
paper entails new methods of digital circuit
design utilizing equation solving over big
Boolean algebras
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