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Abstract. This paper studies Satisfiability (SAT) in finite atomic Boolean algebras larger than the two-valued one B2, which are 
named big Boolean algebras. Unlike the formula ݃(ࢄ) in the SAT problem over B2, which is either satisfiable or unsatisfiable, this 
formula for the SAT problem over a big Boolean algebra could be unconditionally satisfiable, conditionally satisfiable, or unsatisfiable 
depending on the nature of the consistency condition of the Boolean equation	{݃(ࢄ) = 1}, since this condition could be an identity, a 
genuine equation, or a contradiction. The paper handles this latter SAT problem by using a conventional method and a novel one for 
deriving parametric general solutions, and subsequently utilizing expansion trees for generating all particular solutions of the 
aforementioned Boolean equation. Each of these two methods could be cast in pure algebraic form, but becomes much easier to 
visualize and comprehend when presented via the natural map of a big Boolean algebra, which (for historical reasons) is called the 
variable-entered Karnaugh map (VEKM). In the classical method, the number of parameters used is minimized and compact solutions 
are obtained. However, the parameters belong to the underlying big Boolean algebra. By contrast, the novel method does not attempt 
to minimize the number of parameters used, as it uses independent parameters belonging to the two-valued Boolean algebra B2 for 
each asserted atom in the Boole-Shannon expansion of the formula	݃(ࢄ). Though the method produces non-compact expressions, it is 
much quicker in generating particular solutions. The two methods are demonstrated via two detailed examples.   
Keywords: Satisfiability, Big Boolean algebras, Boolean-equation solving, Parametric solutions, Particular solutions, Novel method. 

1. Introduction 

Propositional or (two-valued) Boolean 
Satisfiability (SAT) is the problem of deciding 
whether a propositional logic formula ݃(ࢄ) can 
be satisfied (equated to 1) given suitable 
propositional value assignments to the variables ࢄ of the formula. The formula is satisfiable if 
the solution set of the Boolean equation {݃(ࢄ) = 1} is non-empty, and the formula is 
unsatisfiable if that solution set is empty[1-3]. 
For n variables, there are 2n possible truth 
assignments to be checked. In fact, the SAT 
problem is the first problem that has been 
proven to be NP-complete. This means that it is 
a highly intractable problem, and unless P = NP, 
all SAT algorithms (and all algorithms for any 
NP-complete problem) require worst-case 
exponential time. Since all NP-complete 

problems are mutually reducible to one another 
in linear time, a SAT solver can be used to solve 
other NP-complete problems at a modest extra 
cost. The literature abounds with sophisticated 
algorithms[4-15] that are designed to deal with 
large or gigantic SAT problems. Most of these 
algorithms were initiated with and influenced by 
the celebrated Davis-Putnam search strategy[4, 5].  

When studying the SAT problem, it is 
typically assumed that the pertinent formula is 
given as a Conjunctive Normal Form (CNF), 
i.e., as a formula consisting of a conjunction 
(ANDing) of clauses (alterms), each of which 
consists of a disjunction (ORing) of literals, 
where a literal is a variable in un-complemented 
form		ܺi or in a complemented form  തܺ୧. A CNF 
is also known in digital-design circles as a 
product-of-sums (pos) expression[1, 2, 16, 17]. The 
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dual to a CNF is the Disjunctive Normal Form 
(DNF) which is a formula consisting of a 
disjunction (ORing) of products (terms), each of 
which consisting of a conjunction (ANDing) of 
literals. A  DNF is also known as a sum-of-
products (sop) expression[1, 2, 16, 17]. A special 
case of an sop expression is a disjoint 
(orthogonal) sop expression, which is one in 
which the ANDing of any two products is 0.  

The formula	(	 ଵܺ 	∨ 	ܺଶ ∨ 	ܺଷ) ∧ (	 തܺଵ 	∨	 തܺଶ 	∨ 	ܺଷ) can be cited as a simple example of 
a satisfiable Formula. It has, in fact, several 
satisfying truth assignments, namely when  {ܺଷ = 1 with ଵܺ and ܺଶ being unspecified or 
don't cares} and when {ܺଷ = 0 with ଵܺ being 
the complement of	ܺଶ}. These are the six 
primitive assignments { ଵܺ = 0, ܺଶ = 0, ܺଷ =1}, { ଵܺ = 0, ܺଶ = 1, ܺଷ = 1}, { ଵܺ = 1, ܺଶ =0, ܺଷ = 1}, { ଵܺ = 1, ܺଶ = 1, ܺଷ = 1}, { ଵܺ =0, ܺଶ = 1, ܺଷ = 0} and { ଵܺ = 1, ܺଶ = 0, ܺଷ =0}.  It is easy to visualize that the 8-cell 
Karnaugh map for the aforementioned formula 
is 0-entered for the cell { ଵܺ = 0, ܺଶ = 0, ܺଷ =0} representing the clause or Maxterm (	 ଵܺ 	∨	ܺଶ 	∨ 	ܺଷ), and also for the cell { ଵܺ = 1, ܺଶ =1, ܺଷ = 0} representing the clause or Maxterm (	 തܺଵ 	∨ 	 തܺଶ 	∨ 	ܺଷ), and hence this map is 1-
entered for the remaining six cells. A Simple 
Example of an unsatisfiable formula is the 
formula	(	 ଵܺ ∧ 	 തܺଵ). Likewise, the formula 	( ଵܺ 	∨ 	 ଵܺ 	∨ 	 ଵܺ) ∧ (	 തܺଵ 	∨ 	 തܺଵ 	∨ 	 തܺଵ	) is 
unsatisfiable. Any formula containing all the 
Maxterms of a function is identically equal to	0, 
and hence is unsatisfiable. An example of such 
a formula is: 	( തܺଵ 	∨ 	 തܺଶ	) ∧ (	 തܺଵ 	∨ 	ܺଶ	) ∧ ( ଵܺ 	∨ 	 തܺଶ	)∧ (	 ଵܺ 	∨ 	ܺଶ	) 
If one or more Maxterms are dropped of this 
formula, it becomes satisfiable. For example, 
If we drop the clause	(	 ଵܺ 	∨ 	ܺଶ	), we obtain 	(	 തܺଵ 	∨ 	 തܺଶ	) ∧ (	 തܺଵ ∨ 	ܺଶ	) ∧ ( ଵܺ 	∨ 	 തܺଶ	),  
which is satisfiable by { ଵܺ = 0, ܺଶ 	= 0}. 

There are many extensions of SAT 
which are problems that either use the same 
algorithmic techniques as used in SAT, or use 
SAT as a core engine. These include 
Satisfiability Modulo Theories (SMT), 
maximum satisfiability (MaxSAT), minimum 
satisfiability (MinSAT), model counting (SAT 
degree), and Quantified Boolean Formulas 
(QBF)[18]. Applications of SAT include many 
hard combinatorial problems such as problems 
that arise in formal verification, artificial 
intelligence, operations research, biology, 
cryptology, data mining, machine learning, 
mathematics, model-checking of finite-state 
systems, design debugging, inference in 
bioinformatics, knowledge-compilation, 
software model checking, software testing 
package, management in software 
distributions, checking of pedigree 
consistency, test-pattern generation in digital 
systems, design debugging and diagnosis, 
identification of functional dependencies in 
Boolean functions, technology-mapping in 
logic synthesis, and circuit delay 
computation[18].  

While most algorithms, extensions and 
applications of the Boolean satisfiability 
problem are in the domain of two-valued crisp 
logic, there have been a few publications 
dealing with the satisfiability problem in 
multi-valued logic[19] and fuzzy logic[20, 21]. To 
the best of our knowledge, no work on the 
satisfiability problem over big Boolean 
algebras has, so far, appeared in the open 
literature.   

The aim of this paper is to handle the 
SAT problem for the formula ݃(ࢄ) over an 
arbitrary or big Boolean algebra[22, 23] by using 
a conventional method and a novel one for 
deriving parametric general solutions of the 
Boolean equation	{݃(ࢄ) = 1}, and 
subsequently utilizing expansion trees for 
generating all particular solutions of the 
aforementioned Boolean equation. These 
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methods could be cast in pure algebraic 
form[24-27], but become much easier to 
visualize and comprehend when presented via 
the natural map of a big Boolean algebra, 
which (for historical reasons) is called the 
variable-entered Karnaugh map (VEKM)[23, 28-

37]. In the classical method, the number of 
parameters used is minimized and compact 
solutions are obtained[22, 23, 30, 38-41]. However, 
the parameters belong to the underlying big 
Boolean algebra.  By contrast, the novel 
method does not attempt to minimize the 
number of parameters used, as it uses 
independent parameters belonging to B2 for 
each asserted atom in the Boole-Shannon 
expansion of the formula	݃(ࢄ). Though the 
method produces non-compact expressions, it is 
much quicker in generating particular solutions.  

The organization of the rest of this paper 
is as follows: Section 2 lists certain useful 
features of big Boolean algebras, and clarifies 
important aspects of the SAT problem over 
them. Section 3 reviews classical parametric 
general solutions of big Boolean equations. 
This section makes the paper self-contained as 
it sets the stage for introducing the novel 
method for parametric general solutions in 
Section 4. Both sections explain how 
parametric solutions can be used to generate all 
particular solutions, which are all the satisfying 
instances of the SAT problem. Much work 
might be saved if all that is required is a single 
particular solution, i.e., a single satisfying 
instance of the SAT problem. The two methods 
might be presented in a purely algebraic 
fashion by using the Boole-Shannon expansion 
to handle the discriminants of ݃(ࢄ)[22]. An 
equivalent (albeit more insightful) scheme is 
adopted herein by using the natural map of ݃(ࢄ)[23].  The two methods are demonstrated 
via two examples that illustrate the two 
prominent possible outcomes when the formula g(܆) is unconditionally satisfiable or 

conditionally satisfiable. Section 5 concludes 
the paper. 

2. Satisfiability over Big Boolean Algebras 

A Boolean algebra is a quintuple B = (B, 
, , 0, 1) in which B is a set, called the 
carrier;  and  are binary operations on B, 
and the zero (0) and unit (1) elements are 
distinct members of B, with certain postulates 
on commutativity, distributivity, identities and 
complementation being satisfied. The 
following facts about a Boolean algebra can be 
deduced[22-26, 42-45]: 

1. Every element X of B has a unique 

complement X . 

2. There is a partial-order or inclusion 
(≤) relation on B that is reflexive, anti-
symmetric, and transitive. 

3. A Boolean algebra B enjoys many 
useful properties such as associativity, 
idempotency, absorption, involution, 
consensus and duality. 

4. A Boolean algebra B is a 
complemented distributive lattice whose 0 and 
1 values are distinct. 

5. A nonzero element Z of B is said to be 
an atom of B if and only if for every X  B, the 
condition X ≤ Z implies that X = Z or X = 0. 

6. Every finite Boolean algebra B is 
atomic, i.e. for every nonzero element X  B, 
there is some atom Z such that Z ≤ X. This 
viewpoint rejects the case {0 = 1} as a 
contradiction, and ignores the possibility of an 
atomless algebra B1 in which {0 = 1} is 
accepted! 

7. Examples of Boolean algebras 
include the algebra of classes (subsets of a 
set), the algebra of propositional functions, the 
arithmetic Boolean algebra, the switching or 
two-element Boolean algebra, as well as big 
Boolean algebras. 
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8. Boolean algebras with the same 
number of elements are isomorphic. 

9. Every finite Boolean algebra B has 2ெ elements, where ܯ is the cardinality of 
(number of elements in) the set of atoms of B. 
Following Brown[22], we distinguish Boolean 
algebras larger than the two-valued one (the 
switching algebra B2, 1= ܯ) by naming them 
big Boolean algebras. 

10.  A Boolean function f: Bn → B, 
where B is a carrier of 2ெ	elements, is 
uniquely determined by a truth table or a 
Karnaugh map partially representing f for the 
restricted domain {0, 1}n which is a strict 
subset of the complete domain Bn. 

11.  The elements of B are named in 
terms of a minimum number of abstract 
variables or generators Y = (Y1, Y2, …, Ym), 
with  the elements of B taken as the elements 
of the free Boolean algebra FB(Y) = FB(Y1, 
Y2, …, Ym) which  is isomorphic to the 
Boolean algebra of switching functions of ݉ 
variables, and possesses ܯ =	2௠ atoms and 2ெ elements. The smallest big Boolean algebra 
B4 has a single generator a, two atoms തܽ and ܽ, 
and 4 partially-ordered elements (0 ≤	 { തܽ, ܽ} ≤1) that are the 4 switching functions of one 
variable. Figure 1 uses a 4-dimensional 
hypercube lattice to visualize the big Boolean 
algebra B16 which has two generators a and b, 
four atoms bababa ,, and ab , and 16 
partially-ordered elements that are the 16 
switching functions of 2 variables. Figure 2 
demonstrates a cubic lattice that represents the 
big Boolean algebra B8 which still has two 
generators a and b, but only three atoms തܾܽ,ഥ  തܾܽ, and ܾܽ,ഥ  and 8 partially-ordered elements. 
Note that B8 in Fig. 2 can be obtained from B16 
in Fig. 1 by nullifying its atom ab. More 
information on the lattice constructions in Fig. 
1 and 2 is available in Rushdi and Amashah[23, 

30]. 

Unlike the SAT problem over B2, where 
a formula ݃(ࢄ) is either satisfiable if the 
solution set of the Boolean equation {݃(ࢄ) =1} is non-empty, or unsatisfiable if that solution 
set is empty, the SAT problem over a big 
Boolean algebra has three possibilities: 

 The formula ݃(ࢄ) is unconditionally 
satisfiable if the consistency condition of the 
Boolean equation {݃(ࢄ) = 1} is an identity. In 
this case, ݃(ࢄ) is satisfied by every particular 
solution of the Boolean equation, and the 
underlying Boolean algebra remains intact. 

 The formula ݃(ࢄ) is conditionally 
satisfiable if the consistency condition of the 
Boolean equation {݃(ࢄ) = 1} is a genuine 
consistent equation, whose solutions nullify 
some atoms of the underlying Boolean algebra, 
thereby leading to its collapse to a smaller 
algebra. In this case ݃(ࢄ) is satisfied (subject 
to the consistency condition) by every 
particular solution of the Boolean equation 
over the collapsed Boolean algebra. 

 The formula ݃(ࢄ) is unsatisfiable if the 
consistency condition of the Boolean equation {݃(ࢄ) = 1} is a contradiction	{1 = 0}. In this 
case, the solution set of the Boolean equation {݃(ࢄ) = 1} is empty, and all atoms of the 
underlying Boolean algebra are nullified, 
thereby leading to its collapse to a single point. 
This happens when the function ݃(ࢄ) is 
identically equal to 0, e.g., when ݃(ࢄ) is 
actually a conjunction of all Maxterms (even in 
disguise). A simple example of such a function 
in the big Boolean algebra B65536 with elements 
in ܤܨ(a, b, c, d) is: ݃( ଵܺ, ܺଶ) = (ܽ	 ∨ 	 തܺଵ 	∨ 	 തܺଶ		) ∧(	 തܽ 	∨ തܺଵ 	∨ 	 തܺଶ	) 	∧ (ܾ	 ∨ ଵܺ 		∨ 	 തܺଶ		) 	∧	൫ തܾ 	∨ 	 ଵܺ 	∨ 	 തܺଶ൯ ∧ (ܿ	 ∨ 	 തܺଵ 	∨ 			ܺଶ	) ∧(	ܿ̅ 	∨ തܺଵ 	∨ 	ܺଶ		) ∧ (݀	 ∨ ଵܺ 		∨ 	ܺଶ		) 	∧	൫݀̅ 	∨ 	 ଵܺ 	∨ 	ܺଶ൯.																																																(1) 

The SAT problem over a big Boolean 
algebra is handled herein by solving a Boolean 
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equation. There are three main types of 
Boolean-equation solutions, which can be 
identified as subsumptive general solutions[22, 

25-29, 31-34], parametric general solutions[22, 23, 25, 

26, 30, 31, 38-41] and particular solutions. In a 
subsumptive general solution, each of the 
variables is expressed as an interval based on 
successive conjunctive or disjunctive 
eliminants of the underlying function	݃(ࢄ). In 
a classical parametric general solution, each of 
the variables is expressed via arbitrary 
parameters, i.e., via freely chosen elements of 
the underlying Boolean algebra. A particular 
solution is an assignment from the underlying 
Boolean algebra to every pertinent variable 
that makes the Boolean equation an identity. 
We are going to present a novel parametric 
general solution which uses independent 
parameters belonging to B2 for each asserted 
atom in the Boole-Shannon expansion of the 
formula	݃(ࢄ). This novel method will be seen 
to be a very convenient way of listing all 
particular solutions. 

3. Classical Parametric General Solutions of 
Big Boolean Equations 

In the classical method of parametric 
solution of big Boolean equations, the 
minimum number of parameters is sought. 
Though this method is well established[22, 23, 25, 

26, 30, 31, 38-41], we review it herein to make the 
paper self-contained, and to set the stage for 
the next section. Brown[22] proved that n 
parameters are sufficient to construct a 
parametric general solution of an n-variable 
Boolean equation ݃(ࢄ) = 1, where	݃(ࢄ): ࡮n࡮. He proposed a procedure for 
constructing such a solution using the fewest 
possible parameters, p1, p2, …, pk, which are 
elements of ࡮, where    k  n. Rushdi and 
Amashah[23, 30]  adapted this procedure of 
Brown into a VEKM procedure as follows: 

 
Fig. 1. A hypercube lattice indicating the partial ordering 

among the 16 elements of B16. 

 
Fig. 2.  The lattice in Fig. 1, collapsed under the condition 

ab = 0 so as to represent B8. 

(a) Construct a VEKM 
representing		݃(ࢄ). Such a construction is 
achieved via a Boole-Shannon tree 
expansion[46, 47]. If the original Boolean 
equation is in the dual form ݂(ࢄ)= 0, then 
construct a VEKM for ݂(ࢄ), and complement 
it cell-wise[28, 48] to obtain a VEKM for ݂(̅ࢄ) =  .(ࢄ)݃	

(b)  Expand the entries of the VEKM of ݃(ࢄ)	as ORing of appropriate atoms of the 
Boolean carrier B, or equivalently as a 
minterm expansion of the free Boolean algebra 
representing B. If atom i (1  i  I) of B 
appears 	ܣ௜ times in the cells of this VEKM, 
then the number of particular solutions N is 
given by 
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ܰ =	∏௜ୀଵூ  ௜.         (2)ܣ	

(c)  If certain atoms of B do not appear 
at all in any cell of the VEKM for ݃(ࢄ), then 
these atoms must be forbidden or nullified. 
Such a nullification constitutes a consistency 
condition for the given Boolean equation. 

(d) Construct a VEKM for an associated 
auxiliary function ࢄ)ܩ,  This VEKM is .(࢖
deduced from that of ݃(ࢄ) through the 
following modifications: 

 (d1) Each appearance of an entered 
atom in the VEKM of ݃(ࢄ) is ANDed with a 
certain element of a set of orthonormal tags of 
minimal size. An orthonormal set consists of a 
set of terms Ti, i = 1, 2, …, m, which are both 
exhaustive (T1  T2  … Tm = 1) and 

mutually exclusive (Ti  ∧ Tj = 0 for 1  i < j ≤ 
m ). The terms Ti are products of parameters ݌௥, 1  r ≤ k, in uncomplemented or 
complemented form. The set of tags for 
different atoms share the same parameters. 
The number of parameters  k is minimized and 
is given by the ceiling of the base-2 logarithm 
of the maximum number of appearances ܣ௜ of 
an atom, 

(3) 

(d2) Each nullified atom is entered as a 
don’t care in all the VEKM cells of the 
associated auxiliary function ࢄ)ܩ,  .(࢖

(e) The parametric solution is  ௜ܺ= The sum (ORing) of the entries in 
the 2n-1 cells constituting (	 ௜ܺ 	= 1), i.e. in half  
of the VEKM in which ௜ܺ 	is asserted ), ( i = 1, 
2, …, n ), namely     ௜ܺ 	 {௒೔ୀଵ|࢔{଴,ଵ}∍ࢅ	}∨	= 	G(܇,  (4)             .(ܘ

 (f) Apply an appropriate VEKM 
minimization procedure[46-49] to recast (4) in a 
minimal form. 

 

Example 1 

We apply the aforementioned technique 
to the function ଵ݃(ࢄ):	࡮ସ	ଷ →  given by the	૝࡮
natural map in Fig. 3. This natural map is 
typically called a Variable-Entered Karnaugh 
Map (VEKM)[23, 28-34, 46-49] with map variable ࢄ = { ଵܺ, ܺଶ, ܺଷ}	and with an entered ‘variable’ 
that is not really a variable but is the generator ܽ of the underlying Boolean algebra ࡮ସ	=	{0, 1, തܽ, ܽ}. The map can be read [38, 39] 
to express ଵ݃(ࢄ) in pos (CNF) form as: 

 
(5) 

or in sop (DNF) form as ଵ݃(ࢄ) = 	ܽ തܺଵ 	∨ 		ܽ തܺଶ 		∨ 	 ଵܺܺଷ 	∨ 	ܺଶܺଷ   (6)                  

The map in Fig. 3 indicates that ଵ݃(ࢄ) is 
unconditionally satisfied. In fact, the map 
displays three satisfying assignments 
[ ଵܺ	ܺଶ	ܺଷ] = [0	1	1], [1	1	1], and [1	0	1], for 
which ଵ݃(ࢄ) = 1. Other possible satisfying 
assignments can be obtained if one constructs 
the complete Function Table of ଵ݃(ࢄ):	࡮ସ	ଷ ଷ	ସ࡮ ૝, which has a larger domain of࡮→  =  {0, 1, തܽ, ܽ}	ଷ consisting of 4	ଷ= 64 cells. This 
larger domain includes the 8-cell domain {0, 1}	ଷ	of the map in Fig. 3. Construction of 
this function table constitutes a brute force 
(exhaustive and time-consuming) method for 
obtaining not only the solution set of the 
equation { ଵ݃(ࢄ) 	= 1} but also the solution set 
of the inequation { ଵ݃(ࢄ) 	≠ 1)}, which is the 
union of the solution sets of the equations 
{ ଵ݃(ࢄ) = 0	}, { ଵ݃(ࢄ) = ܽ	}, and { ଵ݃(ࢄ) =തܽ	}. To give the reader a glimpse of the nature 
of a function table, we include the table for ଵ݃(ࢄ) in Fig. 4. The availability of such a table 
should not defeat the purpose of our present 
equation-solving strategy, simply because the 
construction of such a table is usually 
prohibitively tedious for any non-toy problem 
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Steps of our proposed solution are 
illustrated by Fig. 5 and 6. In Fig. 5, the entries 
of the map for the function ଵ݃(ࢄ) in Fig. 3 are 
expanded in terms of the two atoms {ܽ	, തܽ	} of ܤସ, which happen to be the minterms of FB(ܽ). 
In Fig. 6, the 7-element set of the three-
parameter orthonormal tags (݌ଵ݌ଶതതത݌ଷ, ݌ଵ݌ଶതതത	݌ଷതതത, ݌ଵ݌ଶ݌ଷ, ݌ଵ݌ଶ݌ଷതതത, ݌ଵതതത	݌ଶ݌ଷ, ݌ଵതതത݌ଶ݌ଷതതത,	݌ଵതതത	݌ଶതതത) is 
used for atom a and the 3-element set of the 
two-parameter orthonormal tags (݌ଶ݌ଷതതത, ݌ଶതതത,	݌ଶ݌ଷ) is used for atom ā. Note that the two 
atoms share the two parameters ݌ଶ	and	݌ଷ, and 
the number of particular solutions is 7*3 = 21. 
The final parametric solution is given by[31]  ଵܺ= (݌ଵതതത	݌ଶതതത		∨݌ଵതതത݌ଷ		∨		ܽ	݌ଵ݌ଶ݌ଷതതത)	∨ തܽ (݌ଶതതത 	∨  (ଷ݌	

(7a) ܺଶ	= (݌ଵതതത	݌ଶതതത		∨	 ݌ଵതതത	݌ଷതതത		∨	݌ଶതതത	݌ଷതതത)	∨	 തܽ (݌ଶതതത 	∨  (ଷതതത݌	
(7b)  ܺଷ=  ݌ଵതതത  ∨	݌ଶ݌ଷ	∨	 തܽ.               (7c) 

together with the consistency condition 

0 = 0.                          (7d) 

Note that the parameters {݌ଵ ݌ଶ		݌ଷ} 
belong to the underlying big Boolean algebra ࡮ସ	=	{0, 1, തܽ, ܽ}. Particular solutions can be 
deduced from the parametric solution (7) via a 
three-level quaternary expansion tree[31], which 
traverses a  search space of 43 = 64 points 
(more than double the cardinality of the 
solution set), and is further complicated by the 
fact that expansion at a child node is dependent 
on earlier expansions at parent nodes. Though 
the parametric solution (7) has the advantage of 
being of minimum parameters, it is discredited 
for the tedious effort it needs to produce 
particular solutions. 

Example 2 

Now consider the function ݃ଶ(ࢄ): ࡮ଵ଺	ଷ →  ,૚૟ given by its natural map in Fig. 6࡮
where ࡮૚૟ = ,ܽ)ܤܨ ܾ) is displayed as a 
complemented distributive lattice in Fig. 1. 

The map can be read[46, 47] to express ݃ଶ(ࢄ) in 
pos (CNF) form as:  

  (8)  

or in sop (DNF) form as:  ݃ଶ(ࢄ) = ܽതܾ തܺଵܺଷതതത 	∨ 	 തܾܽ തܺଵܺଷ 	∨ 	 തܾ തܺଵܺଶതതത	ܺଷതതത 	∨	 തܽ തܺଵܺଶതതത	ܺଷ                                           
(9) 

The map in Fig. 7 indicates that ݃ଶ(ࢄ) is 
not unsatisfiable (since it is not identically 0). 
Figure 7 can be used also to deduce that ݃ଶ(ࢄ) 
is not unconditionally satisfiable, either. In fact, 
Fig. 7 tells us that only three of the four atoms 
of the underlying ܤଵ଺ algebra, namely തܾܽ, ܽ തܾ	ܽ݊݀	 തܽ തܾ, appear in the entries of the 
map of Fig. 8. Their appearances are 2, 2, and 
2, respectively, which means that the number 
of particular solutions is 2*2*2 = 8. The fourth 
atom ܾܽ does not appear anywhere in Fig. 7. 
Its nullification constitutes the consistency 
condition. ܾܽ = 0,   (10a) 

which causes the underlying Boolean 
algebra ܤଵ଺ to collapse to ଼ܤ shown in Fig. 2. In 
this case, a single parameter ݌ is needed so as 
to produce a 2-element orthonormal set {	̅݌,  .{݌
The 2 elements of this set are used to tag the 2 
appearances of each of the asserted atoms ( തܾܽ, ܽ തܾ	ܽ݊݀	 തܽ തܾ) as shown in Fig. 8. In addition, 
the nullified atom ܾܽ is entered don’t-care in 
every cell of the map in Fig. 8. Now, this map 
represents the auxiliary function ܩଶ( ଵܺ, ܺଶ, ܺଷ;  (݌
associated with ݃ଶ( ଵܺ, ܺଶ, ܺଷ). Finally the 
solution of {݃ଶ(ࢄ) = 1} is given by: ଵܺ = 0,       (10b) ܺଶ = ̅݌ܾ 	∨ ଷܺ (10c)          ,݌ܽ = ܾ	 ∨ തܽ݌.         (10d) 
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together with the consistency condition (10a) 
given earlier. The single parameter ݌ in (10 b) – 

(10 d) belongs to the collapsed Boolean 
algebra B଼ in Fig. 2. 
 

 
 ܽ ܽ 0 ܽ 

 

1 1 1 

 
 
 ଵ݃(ࢄ) 

Fig. 3. A natural map representing the Boolean function ଵ݃(ࢄ) in Example 1. 

 

X3/X1 0 1 ܽ ܽ	ഥ  

0 ܽ ܽ ܽ ܽ ܽ 0 0 ܽ ܽ 0 0 ܽ ܽ ܽ ܽ ܽ 

1 ܽ 1 ܽ 1 1 1 1 1 ܽ 1 ܽ 1 1 1 1 1 ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ ܽ	ഥ  ܽ 1 ܽ 1 1 ഥܽ  ഥܽ  1 ܽ ഥܽ  0 1 1 1 1 1 

X2 0 1 ܽ ܽ	ഥ  0 1 ܽ ഥܽ  0 1 ܽ ഥܽ  0 1 ܽ ഥܽ  

Fig.  4. The function table of 64 cells for the function ଵ݃(ࢄ)	of Example 1. The 8 cells constituting the Karnaugh map of Fig. 

3 are shaded. 

 

 
 ܽ ܽ 0 ܽ 

 ܽ ∨ തܽ ܽ ∨ തܽ ܽ	∨ തܽ 
 
 ଵ݃(ࢄ)  

Fig. 5. Entries of the map for the function ଵ݃(ࢄ) in Fig. 3 expanded in terms of atoms of ࡮૝	or minterms of FB(ܽ). 

 
 

ଵܺ 

ܺଶ 

ܺଷ 

ܽ 

ܺଶ 

ܺଷ 
ܽ 

ଵܺ
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ଶതതത݌ଵ݌ ܽ ଷ݌ଶതതത݌ଵ݌ ܽ   ଷതതത݌ଶ݌ଵ݌ ܽ ଷതതത 0݌

 ଷതതത݌ଶ݌ଷതതത∨ തܽ݌ଶ݌ଵതതത݌ ܽ 

ଵതതത݌ ܽ  ଶതതത݌ଶതതത∨ തܽ݌

	∨	ଷ݌ଶ݌	ଵതതത݌ ܽ
 തܽ ݌ଶ݌ଷ 

 
 
)ଵܩ  ଵܺ, ܺଶ, ܺଷ; ,ଵ݌ ,ଶ݌  (ଷ݌
 

Fig. 6.  Each appearance of an entered atom in Fig. 5 ANDed with an element of a set of orthonormal tags. The parameters used 
are shared by the two atoms. 

 

 
 തܾ ܽതܾ തܾܽ തܽ 

 
0 0 0 

 
 ݃ଶ(ࢄ) 

 

Fig. 7. A natural map representation of the Boolean function ݃ଶ(ࢄ) in (8) or (9). 

 

 
 

 തܽ തܾ̅݌ ∨ ܽ തܾ̅݌ ∨ 	݀(ܾܽ) ܽതܾ݌ ∨ ݀(ܾܽ) തܾܽ̅݌ ∨ ݀(ܾܽ) തܽ തܾ݌	∨ തܾܽ	݌	∨ 	݀(ܾܽ) 
 ݀(ܾܽ) ݀(ܾܽ) ݀(ܾܽ) 

 
)ଶܩ  ଵܺ, ܺଶ, ܺଷ;  (݌

Fig. 8. Each appearance of an entered atom in Fig. 6 is ANDed with a certain element of the set of orthonormal tags {	̅݌ ,݌ } while 

the atom ࢈ࢇ that appears nowhere in Fig. 6 is entered don't care. 
 

ܺଶ 

ܺଷ ܽ ݌ଵ݌ଶ݌ଷ
ଵܺ 

ܺଶ 

ଵܺ 0 

ܺଷ 

ܺଶ 

ଵܺ ݀(ܾܽ) 
ܺଷ 
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4. Novel Parametric General Solutions 
of Big Boolean Equations 

The procedure in Sec. 3 is modified 
herein by disallowing any sharing of 
parameters among atoms, i.e. using an 
independent parameter for each atom. This 
modification is implied in the shortcut[22, 23, 30] 
used to obtain specific instances of particular 
solutions. It results in a dramatic increase in 
the number of parameters needed from k given 
by ( 3) to K given by:  ܭ =	∑ logଶڿ	 ூ௜ۀ௜ܣ .       (11) 

However, instead of demanding 
parameters that exhaust all elements of the 
underlying Boolean algebra, each element of 
the new set of independent parameters is now 
required to span only the two values 0 and 1, 
i.e., the elements of ࡮૛.  

Example 1 (Revisited) 

When we apply our novel method 
to		݃ଵ(ࢄ) given by (5) or  (6) and represented 
by either Fig. 3 or Fig. 5, we obtain the 
associated function ܩଵᇱ( ଵܺ, ܺଶ, ܺଷ; ,ଵ݌ ,ଶ݌ ,ଷ݌ ,ସ݌  ,ହ) in Fig. 9݌
which is similar to the corresponding function ܩଵ( ଵܺ, ܺଶ, ܺଷ; ,ଵ݌ ,ଶ݌  in Fig. 6, with the	ଷ)݌
sole exception that while the tags for the atom ܽ are kept intact as functions of ݌ଵ,  ,ଷ݌	݀݊ܽ	ଶ݌
the tags for the other atom തܽ retain their form 
but become functions of new parameters ݌ସ	ܽ݊݀	݌ହ replacing ݌ଶ	ܽ݊݀	݌ଷ. 
Correspondingly, the solution of {	݃ଵ(ࢄ) = 1} 
becomes: ଵܺ= ܽ (݌ଵതതത	݌ଶതതത	∨ ݌ଵതതത݌ଷ	∨	݌ଵ݌ଶ݌ଷതതത)	∨ തܽ (݌ସതതത ∨   (ହ݌

(12a) ܺଶ= ܽ (݌ଵതതത	݌ଶതതത	∨ ݌ଵതതത	݌ଷതതത	∨	݌ଶതതത	݌ଷതതത)	∨ തܽ (݌ସതതത ∨ 	∨	(ଷ݌ଶ݌	∨  ଵതതത݌) ହതതത)(12b) ܺଷ= a݌ തܽ.            (12c) 

together with the consistency condition: 

0 = 0.                           (12d) 

Here each of the five parameters ݌ଵ, ,ଶ݌ ,ଷ݌  ଶ rather࡮  now belongs to	ହ݌	݀݊ܽ	ସ݌
than ࡮ସ. Equations (12a) - (12c) can now be 
written in matrix form as: ሾ ଵܺ ܺଶ ܺଷሿ = (ܽ ∧ Co(ܽ)) ∨ ( തܽ ∧	Co( തܽ)) 

 (13a) 

where the vector ்ࢄ is a disjunction of two 
total contributions (ܽ ∧ Co(ܽ)) and ( തܽ ∧	Co( തܽ)). Here, the contributions Co(ܽ) and 
Co( തܽ) are given by: 

Co(ܽ) =  ሾ݌ଵഥ ଶതതത݌	 ∨ ଵഥ݌ ଷ݌ ∨ ଷതതത݌ଶ݌ଵ݌ ଵഥ݌ ଶതതത݌	 ∨ ଵഥ݌ ଷതതത݌	 ∨ ଷതതത݌	ଶതതത݌ ଵഥ݌ ∨  ଷሿ݌ଶ݌
 (13b) 

Co( തܽ) = ሾ݌ସതതത ∨ ହ݌ ସതതത݌ ∨ 	ହതതത݌ 1	ሿ  (13c) 

This new solution is definitely more 
cumbersome than the earlier one in (7), but it has 
the distinctive advantage of allowing a much 
quicker way to list all particular solutions. 
Instead of a three-level quaternary expansion 
tree, we now need a five-level binary tree (which 
means a reduction by half of the search space 
from 43 = 64 points to 25 = 32 points).  However, 
we can even do better than that by avoiding the 
use of an expansion tree altogether and exactly 
targeting the 21 individual particular solutions. 
We note that Co(ܽ) is a function of  ݌ଵ, )ଷ only, while Co݌	݀݊ܽ	ଶ݌ തܽ) is a function of ݌ସ	ܽ݊݀	݌ହ	only. We can draw a Karnaugh map 
of  3 variables ( and hence 8 cells ) to represent 
Co(ܽ), and another map of two variables (and 
hence 4 cells) to represent Co( തܽ). However our 
original tag sets consist of only 7 and 3 elements, 
respectively. So we need map-like structures to 
represent  these orthonormal tags. Simply, we 
need a 7-variable map of variables  ݌ଵ,  ଷ݌	ଶതതത݌	ଵതതത݌ ଷതതത and݌	ଶതതത݌	ଵതതത݌ ଷ with cells݌	݀݊ܽ	ଶ݌
combined as ݌ଵതതത	݌ଶതതത and also a 2- variable map of 
variables  ݌ସ	ܽ݊݀	݌ହ with cells ݌ସതതത	݌ହതതത  and ݌ସതതത݌ହ 
combined as ݌ସതതത. These map-like structures are 
now entered by specific values of (ܽ ∧ Co(ܽ)) 
and ( തܽ ∧	Co( തܽ))	via (13b) and (13c). According 
to (13a), a particular solution is the disjunction 
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of an arbitrarily-chosen entry in Fig. 10(a) with 
an arbitrarily-selected entry in Fig. 10(b). For 
example, we can use the entry ሾܽ ܽ ܽሿ in the 
leftmost cell of Fig. 10(a) ORed elementwise 
with the entry ሾ തܽ തܽ തܽሿ in the leftmost cell in 
Fig. 10(b) to produce a specific particular 
solution  ሾܽ ܽ ܽሿ ∨  ሾ തܽ തܽ തܽሿ = ሾܽ ∨ തܽ ܽ ∨ തܽ ܽ ∨ തܽሿ	=	ሾ1 1 1ሿ         (14) 

Since any of the 7 cells of Fig. 10(a) can 
go with any of the 3 cells of Fig. 10(b), it is 
clear that we can produce 7*3 = 21 particular 
solutions, as expected. These 21 particular 
solutions are listed as groups of 3 (in a map-
like structure similar to that of Fig. 10(a)) in 
Fig. 11. Substituting of any of these solutions 
into (5) or (6) produces a value of 1 for ଵ݃(ࢄ). 
All of these particular solutions involve either ܽ 
or തܽ, except the three solutions ሾ1 1 1ሿ, ሾ0 1 1ሿ and ሾ1 0 1ሿ which were earlier 
detected on the Karnaugh map of Fig. 3. 

In passing, we note that ଵ݃(ࢄ) is 
partially symmetric in ଵܺ and	ܺଶ, i.e., ଵ݃( ଵܺ, ܺଶ, ܺଷ) = ଵ݃(ܺଶ, ଵܺ, ܺଷ)[50]. Therefore, 
if [ߙ, ,ߚ } is a particular solution of [ߛ ଵ݃(ࢄ) =1} then [ߚ, ,ߙ  is also a particular solution of [ߛ
it. This observation can be verified for the set 
of particular solutions in Fig. 11. 

 

Example 2 (Revisited) 

We now apply our novel method to 
Example 2. Figure 12 replicates Fig. 8, with 
the single parameter ݌ (belonging to ܤଵ଺ 
collapsed to ଼ܤ) replaced by three independent 
parameter, ݌ଵ,  ଷ (belonging to Bଶ)݌	݀݊ܽ	ଶ݌
used in the tags of atoms ܽതܾ	, തܾܽ	ܽ݊݀	 തܽ തܾ, 
respectively, while the map auxiliary function ܩଶ( ଵܺ, ܺଶ, ܺଷ; )ଶᇱܩ is replaced by (݌ ଵܺ, ܺଶ, ܺଷ; ,ଵ݌ ,ଶ݌  ,ଷ). Correspondingly݌
the solution of {݃ଶ(ࢄ) = 1} becomes ଵܺ = 0,       (15a) ܺଶ = ଶതതത݌ܾ 	∨ ଵ,          (15b) ܺଷ݌ܽ = ܾ	 ∨ തܽ݌ଷ = തܽ(ܾ	 ∨ ܾܽ ଷ),       (15c)݌ = 0.              (15d) 

Figure 13 lists all 8 particular solutions for {݃ଶ(ࢄ) = 1} obtained by assigning independent 
binary values to the 3 parameters ݌ଵ,  .ଷ݌	݀݊ܽ	ଶ݌
Each of these 8 solutions involves some form 
(complemented or non-complemented) of the 
generator ܽ or the generator ܾ. That is why none 
of them was detected by the Karnaugh map of 
Fig. 6. Note that if any of the 8 particular 
solutions is substituted into (8) or (9) it does not 
produce {݃ଶ(ࢄ) = 	1} directly, but it produces 
{݃ଶ(ࢄ) = 	ܽ തܾ 	∨ 	 തܾܽ	 ∨ 	 തܽ തܾ} which reduces to ݃ଶ(ࢄ) = 1 with the aid of the consistency 
condition (15d). 
 

 
 ଷതതത݌ଶ݌ଵ݌ ܽ ଷതതത 0݌	ଶതതത݌ଵ݌ ܽ  ଷ݌ଶതതത݌ଵ݌ܽ 

	ଷതതത݌ଶ݌ଵതതത݌ ܽ  ∨ തܽ݌ସ݌ହതതത 
ଵതതത݌ ܽ  ସതതത݌ଶതതത∨ തܽ݌

ଵതതത݌ ܽ ∨	ଷ݌ଶ݌
 തܽ ݌ସ݌ହ 

 
)ᇱܩ  ଵܺ, ܺଶ, ܺଷ; ,ଵ݌ ,ଶ݌ ,ଷ݌ ,ସ݌  (ହ݌

Fig. 9.  Each appearance of an entered atom in Fig. 5 ANDed with a certain element of a set of orthonormal tags. The parameters 
used for different atoms are independent. 

2X 

3X ܽ ݌ଵ݌ଶ݌ଷ
 

1X 



14                                               Ali M. Ali Rushdi and Waleed Ahmad 

 
 
 

[a  a  a] 

[0  a  a] [a  0  0] [0  a  0] 

[a  0  a] [0  0 a] [0  0  0] 

 
 

a.  Total contribution ܽ۱ܗ(ܽ)		of atom ࢇ	 to a particular solution  ሾ ଵܺ ܺଶ ܺଷሿ. 
 
 

[ā  ā  ā] 

 
[ā  0  ā] 

 
[0  ā  ā] 

 

 

b. Total contribution ܽ	ഥ۱ܗ( തܽ)	 of atom ܽ	ഥ  to a particular solution ሾ ଵܺ ܺଶ ܺଷሿ. 
Fig. 10.  Total contributions of atoms ࢇ	and ࢇഥ	to a particular solution ሾ ଵܺ ܺଶ ܺଷሿ shown as entries in map-like structures 

that represent the original orthonormal tags. 
 

[1  1  1] 
[1  a  1] 
[a  1  1] 

[ā  1  1] 
[ā  a  1] 
[0  1  1] 

[1  ā  ā] 
[1  0  ā] 
[a  ā  ā] 

[ā  1  ā] 
[ā  a  ā] 
[0  1  ā] 

[1  ā  1] 
[1  0  1] 
[a  ā  1] 

[ā  ā 1] 
[ā  0 1] 
[0  ā 1] 

[ā  ā  ā] 
[ā  0  ā] 
[0  ā  ā] ሾ ଵܺ ܺଶ ܺଷሿ 

Fig. 11.  A listing of all 21 particular solutions of { ଵ݃(ࢄ) = 1} in Example 1. 

)ܩ  ଵܺ, ܺଶ, ܺଷ; ,ଵ݌ ,ଶ݌  (ଷ݌
Fig. 12. The auxiliary function for Example 2 with tags of independent parameters belonging to ۰૛. 

തܽ തܾ̅݌ଷ ∨ ܽ തܾ݌ଵ∨ ݀(ܾܽ) ܽ തܾ݌ଵ∨ ݀(ܾܽ) തܾܽ̅݌ଶ∨ ݀(ܾܽ) തܽ തܾ݌ଷ ∨ തܾܽ݌ଶ∨ ݀(ܾܽ)
݀(ܾܽ) ݀(ܾܽ) ݀(ܾܽ) ݀(ܾܽ)

ܺଷ

ଵܺ
ܺଶ

 ଶ݌

 ଵ݌

 ହ݌

 ଷ݌

 ସ݌
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 ሾ ଵܺ ܺଶ ܺଷሿ 
Fig. 13. A listing of all eight particular solutions of {݃ଶ(ࢄ) = ૚} subjected to the consistency condition {࢈ࢇ = ૙}.  

 

5. Conclusion 

This paper has two important 
contributions. The paper’s first major 
contribution is to propose that the famous 
problem of Boolean satisfiability (SAT) be 
extended from the two-valued Boolean domain 
to cover big Boolean algebras. The new type 
of satisfiability may therefore be conveniently 
labeled as BigSAT. The paper’s second major 
contribution is to find all possible solutions, if 
any, of BigSAT by constructing parametric 
general solutions of associated Boolean 
equations. The conventional method for 
constructing such solutions was reviewed and 
then superceded by a novel method that can 
immediately exhibit all particular solutions. 
The paper is, therefore, setting the stage for 
solving BigSAT via advanced strategies 
similar to those of the good old Davis-Putnam 
procedure [4] and its many successors. 

This paper sets the stage for future work 
that is more application oriented. We have 
already proposed a novel cryptosystem that is 
based on the utilization of big Boolean 
algebras[36]. The basic idea is to dramatically 
extend the search space needed in SAT-based 
cryptography. The adversary will not only be 
obliged to traverse a search space (that can be 
arbitrarily huge), but might end up with 

several candidate answers, all of which are 
wrong except one. Another sequel of this 
paper entails new methods of digital circuit 
design utilizing equation solving over big 
Boolean algebras  
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 دراسة المشبعية في أنواع الجبر البولاني الكبير بواسطة حل المعادلات البولانية
  وليد أحمدو علي محمد علي رشدي 
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، وهي الأنواع 2Bالمشبعية (ش ب ع) في أنواع الجبر البولاني الذري المحدود الأكبر من الجبر ثنائي القيمة  تمت دراسة .المستخلص
، والتي قد تكون 2Bالمدروسة في مسألة المشبعية على الجبر ثنائي القيمة   (ࢄ)݃المسماة بالجبر البولاني الكبير. وخلافا للصيغة الجبرية

إما مشبعة أو غير مشبعة، ، فإن مثل هذه الصيغة في مسألة المشبعية على جبر بولاني كبير يكون لها حالات ثلاث، فهي قد تكون 
(ࢄ)݃}ط، أو مشبعة شرطيا أو غير مشبعة، ويعتمد ذلك على طبيعة شرط الاتساق للمعادلة المدروسةمشبعة دون شرو = ، حيث  {1

كما أنه قد يأتي على هيئة متناقضة. تناول البحث هذه  ،وقد يكون معادلة أصيلة ،فهو قد يأخذ شكل متطابقة ،إن لهذا الشرط ثلاثة أحوال
يقة تقليدية وأخرى مبتكرة لاشتقاق الحلول العامة المعلمية، ومن ثم توظيف أشجار المفكوكات مسألة المشبعية الأخيرة باستعمال طر

لتوليد جميع الحلول الخاصة للمعادلة البولانية سالفة الذكر. إن أيا من هاتين الطريقتين يمكن أن تصاغ في صورة جبرية بحتة، ولكنها 
خلال الخريطة الطبيعية لدوال الجبر البولاني الكبير، وهي الخريطة  تصبح أوضح في التصور وأيسر في الفهم إذا عرضت من

المعروفة (لأسباب تاريخية) باسم خريطة كارنوه متغيرة المحتويات (خ ك غ ح). في الطريقة التقليدية يتم تصغير عدد المعالم تصغيرا 
لكبير محل الدراسة.  وعلى النقيض من ذلك، لا تسعى أعظميا، فتنشأ حلول ملمومة موجزة، غير أن المعالم تنتمي للجبر البولاني ا

 الطريقة المبتكرة لتصغير عدد المعالم تصغيرا أعظميا، بل تستخدم معالم مستقلة تنتمي إلى الجبر ثنائي القيمة، وذلك لكل ذرة مؤكدة في
رع كثيرا في توليدها للحلول الخاصة . ورغم أن هذه الطريقة تنتج تعبيرات غير ملمومة، فإنها أس(ࢄ)݃شانون للصيغة - مفكوك بول

  .حيث تصبح شجرة المفكوكات شجرة ثنائية. يتم شرح الطريقتين بمثالين تفصيليين

 .المشبعية، أنواع الجبر البولاني الكبير، حل المعادلات البولانية، الحلول المعلمية، الحلول الخاصة، طريقة مبتكرة: كلمات مفتاحية

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


