
JKAU: Eng. Sci., Vol. 28 No. 2, pp: 3 – 9 (1438 A.H./ 2017 A.D.) 

Doi: 10.4197/Eng. 28-2.1 

 

3 

On the Relation between Boolean Curve Fitting and the Inverse Problem of 

Boolean Equations   

Ali M. Rushdi and Ahmed S. Balamesh 

Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz 

University, P. O. Box 80204, Jeddah 21589, Saudi Arabia 

arushdi@kau.edu.sa  

Abstract. This paper explores the similarities and differences between two prominent problems in 

the mathematics of Boolean functions. The first of these problems is that of Boolean curve fitting 

(BCF), also known as Boolean interpolation, which deals with constructing a curve 𝑧 = 𝑓(𝐗) 

through a number of points z𝑘 = 𝑓(𝐗𝑘) where 𝑘 = 1,2, … , 𝑚. The second problem is the Inverse 

Problem of Boolean equations (IPBE), which constructs a Boolean function whose zeroes are all 

known. While the problem of Boolean curve fitting might require a consistency condition for its 

solution, the Inverse Problem of Boolean equations might use a consistency condition as an input. 

Without a consistency condition, the Inverse Problem of Boolean equations can be viewed as a 

special case of the problem of Boolean curve fitting, provided the specified points z𝑘 are the only 

zeros of 𝑓(𝐗). Our findings are illustrated via a detailed typical example. 
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1. Introduction 

The problem of Boolean curve fitting (BCF), 

also known as Boolean interpolation, remained 

a pure mathematical curiosity with no view of 

practical applications for almost one century. 

Most notable among the early contributions to 

this problem are those due to Stamm 
[1]

, 

McKinsey 
[2, 3]

, Ellis 
[4, 5]

, and Scognamiglio 
[6]

. Such contributions culminated in the 

classical treatise by Rudeanu 
[7]

 in 1974. A 

sequel paper by Melter and Rudeanu 
[8]

 in 

1984 specialized the results in 
[7]

 for Boolean 

functions that are linear in the sense of 

Löwenheim 
[9]

. Boolean curve fitting 

witnessed a recent revival 
[10]

, as it finally 

found a useful engineering application in the 

area of cryptography 
[11, 12]

. 

The two problems are seemingly 

identical. So, exposing the subtle differences 

between them is of interest. Our comparison is 

a part of an ongoing effort 
[10,13]

 to transfer 

these two problems from the domain of pure 

mathematics to the reach of engineers and 

problem solvers. The solutions of the two 

problems are being converted from declarative 

specifications (mathematical approach) to 

constructive procedures (engineering 

approach). 

The work of Rushdi and Albarakati 
[13]

 is 

related to Boolean interpolation, essentially as 

a special case, since it deals with the Inverse 

Problem of Boolean equations (IPBE), in 

which a Boolean function 𝑓(𝐗) is required to 

have the same value of 0 (or 1) at (and only at) 
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several distinct points 𝐗 = 𝐗𝑘. However, the 

techniques used in 
[13]

 are not derived from or 

based on concepts of Boolean interpolation. 

The organization of the remainder of this 

paper is as follows. Sections 2 and 3 review the 

available results on the BCF and the IPBE, 

respectively. Section 4 presents the 

mathematical relation between the BCF and the 

IPBE, and explains the deep similarities and 

subtle differences between them.  Section 5 

supports and clarifies the findings of Section 4 

via a demonstrative example. Section 6 

concludes the paper. 

2. On Boolean Curve Fitting 

 In this section, we reproduce from 

Rudeanu
 [7]

 and Rushdi and Balamesh 
[10]

 the 

main results known on Boolean curve fitting. 

The problem at hand requires the 

determination of a Boolean curve whose graph 

passes through 𝑚 given points 
(𝐗1, 𝑧1), (𝐗2, 𝑧2), … , (𝐗𝑚, 𝑧𝑚) of the Boolean 

space 𝐵𝑛 × 𝐵 = 𝐵𝑛+1, where 

 𝐗𝑘 = [𝑋𝑘,1, 𝑋𝑘,2, … , 𝑋𝑘,𝑛]
𝑇

∈ 𝐵𝑛, 𝑘 = 1, 2, … , 𝑚 

and 𝑧𝑘 ∈ 𝐵, 𝑘 = 1, 2, … , 𝑚.  

This is equivalent to finding an interpolating 

Boolean function 𝑓: 𝐵𝑛 → 𝐵 such that 

 𝑓(𝐗𝑘) = 𝑧𝑘, 𝑘 = 1,2, … , 𝑚 (1) 

The solution for the desired interpolating 

function 𝑓(𝐗) is 
[7]

 

𝑓(𝐗) = ⋁ [(⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) ⋁  𝑝𝐀 ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅

𝑚

𝑘=1

] 𝐗𝐀

𝐀∈{0,1}𝑛

 (2) 

where 𝐀 = [𝑎1, 𝑎2, … , 𝑎𝑛]𝑇, 𝑝𝐀 is a parameter 

that belongs to the underlying Boolean algebra 

𝐵 and 𝐗𝐀 is the primitive product (minterm) 

given by 

𝐗𝐀 = 𝐗(𝑎1,𝑎2,…,𝑎𝑛) = 𝑋1
𝑎1𝑋2

𝑎2 … 𝑋2
𝑎𝑛 (3) 

where 

𝑋𝑖
𝑎𝑖 = 𝑋𝑖 ⊙ 𝑎𝑖 = {

𝑋𝑖 , if 𝑎𝑖 = 1

�̅�𝑖 , if 𝑎𝑖 = 0
 (4) 

Equation (2) is valid subject to the consistency 

condition 
[7]

 

⋁ ⋁ [(𝑧𝑘 ⊕ 𝑧ℎ) ⋀(𝑋𝑘,𝑖 ⊙ 𝑋ℎ,𝑖)

𝑛

𝑖=1

]

𝑚

ℎ=1

𝑚

𝑘=1

= 0 (5) 

This consistency condition is needed for a 

solution to exist. Equation (2) reduces to the 

unique solution  

𝑓(𝐗) = ⋁ (⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) 𝐗𝐀

𝐀∈{0,1}𝑛

 (6) 

if, and only if 
[3, 7]

 

⋁ ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅

𝑚

𝑘=1𝐀∈{0,1}𝑛

= 0 (7) 

3. On the Inverse Problem of Boolean 

Equations 

The Forward Problem of Boolean 

equations (FPBE) is to find the solutions of a 

system of Boolean equations typically reduced 

to a single equation 𝑓(𝐗) = 0 (or 𝑔(𝐗) = 1) 

where 𝑓, 𝑔: 𝐵𝑛 → 𝐵, and 𝐵 is an arbitrary 

Boolean algebra. By contrast, the Inverse 

Problem of Boolean equations (IPBE) is to 

construct the equation 𝑓(𝐗) = 0 (or 𝑔(𝐗) = 1) 

given the consistency condition for its solution 

𝑠0 = 0 together with the complete set of 

particular solutions 𝐗𝑘, 𝑘 = 1,2, … , 𝑚 such 

that 𝑓(𝐗𝑘) = 0 (or 𝑔(𝐗𝑘) = 1) for 𝑘 =
1,2, … , 𝑚. Implicit in this definition is that 

𝑓(𝐗) ≠ 0 (or, respectively, 𝑔(𝐗) ≠ 1) for any 

𝐗 that does not belong to the set 

{𝐗1, 𝐗2, … , 𝐗𝑚}. Noting that {𝑓(𝐗) = 0} is 

implied by {𝑠0 = 0} and {𝐗 = 𝐗𝑘, 𝑘 =
1,2, … , 𝑚} and nothing else, Rushdi and 

Albarakati 
[13]

 obtained an expression for 𝑓(𝐗) 

that can be rewritten in the current notation as 
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𝑓(𝐗) =  ⋁ ⋀ (⋁(𝑋𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

) 𝐗𝐀 

𝑚

𝑘=1𝐀∈{0,1}𝑛

∨ 𝑠0 (8) 

Correspondingly, 𝑔(𝐗) is given by 

𝑔(𝐗) =  ⋁ ⋁ (⋀(𝑋𝑖 ⊙ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

 𝐗𝐀

𝐀∈{0,1}𝑛

∧ �̅�0 (9) 

4. The Relation between the BCF and the 

IPBE 

The problem of Boolean curve fitting is 

somewhat similar to the Inverse Problem of 

Boolean equations when z𝑘 = 0 for 𝑘 =
1,2, … , 𝑚. Under these conditions, the 

consistency condition (5) reduces to the trivial 

identity {0 = 0}, and the interpolating function 

(2) reduces to 

𝑓BCF(𝐗) =  ⋁ (𝑝𝐀 ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅

𝑚

𝑘=1

) 𝐗𝐀

𝐀∈{0,1}𝑛

 (10) 

The complemented primtive product in (10) 

can be simpified via (3) and (4) to 

(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅ = ⋀(𝑎i ⊙ 𝑋𝑘,i 

𝑛

i =1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) = ⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

 (11) 

Therefore, the interpolating function (10) 

reduces to 

𝑓BCF(𝐗) = ⋁ 𝑝𝐀 ⋀ (⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

 𝐗𝐀

𝐀∈{0,1}𝑛  

 

 

= ⋁  𝑝𝐀 ⋀ (⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

 ⋀(𝑋𝑖 ⊙ 𝑎𝑖)

𝑛

𝑖=1𝐀∈{0,1}𝑛

 

= ⋁ 𝑝𝐀 ⋀ (⋁(𝑋𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1𝐀∈{0,1}𝑛 

⋀(𝑋𝑖 ⊙ 𝑎𝑖)

𝑛

𝑖=1

 

= ⋁ 𝑝𝐀 ⋀ (⋁(𝑋𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1𝐀∈{0,1}𝑛 

 𝐗𝐀 

 

(12) 

On the other hand, the inverse function 

recovered via (8), whenever no consistency 

condition is required (𝑠0 = 0) is given by 

𝑓IPBE(𝐗) = ⋁ ⋀ (⋁(𝑋𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

 𝐗𝐀

𝐀∈{0,1}𝑛

 

= ⋁ ⋀ (⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

 𝐗𝐀

𝐀∈{0,1}𝑛

 

(13) 

The function 𝑓(𝐗) obtained in (13) by the 

IPBE is exactly the same as the one obtained 

by the BCF in (12) except for an extra 

multiplicative factor 𝑝𝐀 that appears in each 

cell 𝐀 ∈ {0,1}𝑛   in (12). While the function 

𝑓IPBE(𝐗) in (13) is unique, the function 

𝑓BCF(𝐗) in (12) might have many values 

depending on the values of the parameters 𝑝𝐀. 

One of the possible values of 𝑓BCF(𝐗) is 

𝑓IPBE(𝐗), obtained under the conditions 

𝑝𝐀 ⋀ (⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

= ⋀ (⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

)

𝑚

𝑘=1

,

∀ 𝐀 ∈ {0,1}𝑛 

(14) 

Or equivalently 

⋀ (⋁(𝑎𝑖 ⊕ 𝑋𝑘,𝑖)

𝑛

𝑖=1

) ≤

𝑚

𝑘=1

 𝑝𝐀, ∀𝐀 ∈ {0,1}𝑛 (15) 

Conditions (14) or (15) are satisfied, in 

paricular, if  

𝑝𝐀 = 1,   ∀ 𝐀 ∈ {0,1}𝑛 (16) 

Equation (16) means that a sufficient, but no 

necessary, condition for 𝑓BCF(𝑋) = 𝑓IPBE(𝑋) is  

𝑝𝐀 = 1. 

5. Illustrative Example 

Consider the BCF problem of finding an 

interpolating Boolean function 𝑓: 𝐵16
2 → 𝐵16, 

where 𝐵16 = FB{𝑎, 𝑏}, the free Boolean 

algebra with generators 𝑎 and 𝑏, such that it 

represents a curve in the Boolean space 𝐵16
3  

that passes through the four points. 

𝑘 1 2 3 4 

𝐗𝑘 (𝑎�̅�, �̅�𝑏) (𝑎, 𝑏) (�̅�, �̅�) (𝑎 ∨ �̅�, �̅� ∨ 𝑏) 

𝑧𝑘 0 0 0 0 
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It is clear from (5) that the consistency 

condition for this BCF problem is the trivial 

identity (0 = 0). Figures 1 and 2 demonstrate 

the evolution of the variable-entered Karnaugh 

map (VEKM) representation for 𝑓BCF(𝐗) 

expressed via (12). Thus, the final parametric 

solution can be read from the VEKM in Fig. 2 

as
 [14-17]

 

𝑓BCF(𝑋1, 𝑋2) =  𝑝0(�̅�𝑏 ∨ 𝑎�̅�)�̅�1�̅�2

∨ 𝑝1(𝑎 ∨ �̅�)�̅�1𝑋2

∨ 𝑝2(�̅� ∨ 𝑏)𝑋1�̅�2

∨ 𝑝3(𝑎�̅� ∨ �̅�𝑏)𝑋1𝑋2 
(17) 

where, with a little twist of notation, we are 

using 𝑝0, 𝑝1, 𝑝2 and 𝑝3 to stand for 𝑝𝐴 ∈ 𝐴 =
{0,1}2 = {00,01,10,11} or for 𝑝00, 𝑝01, 𝑝10 

and 𝑝11. The corresponding IPBE is to find the 

equation 𝑓(𝐗) = 𝑓(𝑋1, 𝑋2) = 0, where 

𝑓: 𝐵16
2 → 𝐵16 = FB{𝑎, 𝑏} such that it has a 

consistency condition {0 = 0} and a set of 

particular solutions 

 

{(𝑎�̅�, �̅�𝑏), (𝑎, 𝑏), (�̅�, �̅�), (𝑎 ∨ �̅�, �̅� ∨ 𝑏)} (18) 

Figure 3 displays the VEKM representation for 

𝑓IPBE(𝐗) expressed via (13). Thus, the final 

unique solution can be read from the VEKM in 

Fig. 3 as 
[14-17]

 

𝑓IPBE(𝑋1, 𝑋2) =  (�̅�𝑏 ∨ 𝑎�̅�)�̅�1�̅�2

∨ (𝑎 ∨ �̅�)�̅�1𝑋2

∨ (�̅� ∨ 𝑏)𝑋1�̅�2

∨ (𝑎�̅� ∨ �̅�𝑏)𝑋1𝑋2 
(19) 

Matching the terms in (17) and (19), we can 

see that the solution in (19) can be obtained as 

a special case of that in (17) under the 

conditions (15), namely  

 (�̅�𝑏 ∨ 𝑎�̅�) ≤ 𝑝0, (𝑎 ∨ �̅�) ≤ 𝑝1,
(�̅� ∨ 𝑏) ≤ 𝑝2,

(𝑎�̅� ∨ �̅�𝑏) ≤ 𝑝3 
(20) 

 

 
 

  𝑋1 

 𝑝0(𝑎�̅� ∨ �̅�𝑏) 
(𝑎 ∨ 𝑏) 
(�̅� ∨ �̅�) 
(𝑎 ∨ �̅� ∨ �̅� ∨ 𝑏) 

𝑝1(�̅� ∨ 𝑏 ∨ �̅�𝑏) 
(�̅� ∨ 𝑏) 
(𝑏 ∨ �̅�) 
(�̅�𝑏 ∨ �̅� ∨ 𝑏) 

 

 

𝑋2 

𝑝2(𝑎�̅� ∨ 𝑎 ∨ �̅�) 
(𝑎 ∨ �̅�) 
(�̅� ∨ 𝑎) 
(𝑎 ∨ �̅� ∨ 𝑎�̅�) 

𝑝3(�̅� ∨ 𝑏 ∨ 𝑎 ∨ �̅�) 
(�̅� ∨ �̅�) 
(𝑏 ∨ 𝑎) 
(�̅�𝑏 ∨ 𝑎�̅�) 

𝑓BCF(𝐗) 

Fig. 1. Initial VKEM representation of the function obtained via the BCF. 

  𝑋1 
 𝑝0(�̅�𝑏 ∨ 𝑎�̅�) 𝑝1(�̅� ∨ 𝑏) 

𝑋2 𝑝2(𝑎 ∨ �̅�) 𝑝3(𝑎�̅� ∨ �̅�𝑏) 

𝑓BCF(𝐗) 

Fig.  2. Final VKEM representation of the function obtained via the BCF. 

 

  𝑋1 
 �̅�𝑏 ∨ 𝑎�̅� �̅� ∨ 𝑏 

𝑋2 𝑎 ∨ �̅� 𝑎�̅� ∨ �̅�𝑏 

𝑓IPBE(𝐗) 

 Fig. 3. VKEM representation of the function obtained via the IPBE. 
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  𝑋1 

 𝐶01�̅�𝑏 ∨ 𝐶02𝑎�̅� 𝐶10�̅��̅� ∨ 𝐶11�̅�𝑏 ∨ 𝐶13𝑎𝑏 

𝑋2 𝐶20�̅��̅� ∨ 𝐶22𝑎�̅� ∨ 𝐶23𝑎𝑏 
 

𝐶31�̅�𝑏 ∨ 𝐶32𝑎�̅� 

𝑓BCF(𝐗) 

Fig. 4.  VKEM representation with atomic entries of the function obtained via the BCF. 

 

Each of the four parameters 𝑝𝑖 ∈ 𝐵16 =
FB(𝑎, 𝑏), 0 ≤  𝑖 ≤ 3,  can be expanded in 

terms of the four atoms of 𝐵16 as
 [7]

 

𝑝𝑖 = 𝐶𝑖0�̅��̅� ∨ 𝐶𝑖1�̅�𝑏 ∨ 𝐶𝑖2𝑎�̅� ∨ 𝐶𝑖3𝑎𝑏, 

𝐶𝑖𝑗 ∈ {0,1}, 0 ≤  𝑖 ≤ 3 
(21) 

Note that the expansions in (21) involve 

4 × 4 = 16 binary coefficients. The entries of 

the VEKM in Fig. 2 can now be expressed as 

𝑝0(𝑎�̅� ∨ �̅�𝑏) = 𝐶01�̅�𝑏 ∨ 𝐶02𝑎�̅� 

𝑝1(�̅� ∨ 𝑏) = 𝐶10�̅��̅� ∨ 𝐶11�̅�𝑏 ∨ 𝐶13𝑎𝑏 

𝑝2(𝑎 ∨ �̅�) = 𝐶20�̅��̅� ∨ 𝐶22𝑎�̅� ∨ 𝐶23𝑎𝑏 

𝑝3(𝑎�̅� ∨ �̅�𝑏) = 𝐶31�̅�𝑏 ∨ 𝐶32𝑎�̅� 
(22) 

We now replace the VEKM of Fig. 2 by the 

one of atomic entries in Fig. 4, in which 10 

only of the aforementioned binary coefficients 

remain. Since each of these coefficients can be 

assigned two values independently of the 

others, the number of distinct particular 

solutions expressed by 𝑓BCF(𝐗) in (17) is 

210 = 1024. This is the number of curves 

passing through the four points in the given 

Boolean space.  

5. Conclusion 

This paper explores the relation between 

the problem of Boolean curve fitting (BCF) 

and the problem of the Inverse Problem (IPBE) 

of Boolean equations. Despite the great 

similarity between the two problems, there is a 

subtle difference between them as the first 

might require a consistency condition for its 

solution while the second might use such a 

condition as input. Without a consistency 

condition in either problem, the two problems 

yield solutions that differ only via an arbitrary 

multiplicative parameter needed in the BCF 

problem. The BCF problem might have 

conditioned or unconditioned solutions that 

might be numerous or unique or it might have 

no solutions at all. By contrast, the IPBE is 

guaranteed to have a unique solution that 

happens to be one of those produced by the 

BCF problem. 
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 حول العلاقة بين مواءمة المنحنيات البولانية والمسألة العكسية للمعادلات البولانية
  أحمد سعيد بالعمشو علي محمد رشدي 

، المملكة 21589.، جدة 80204كلية الهندسة، جامعة الملك عبدالعزيز، ص.ب قسم الهندسة الكهربائية وهندسة الحاسبات،  
 العربية السعودية

arushdi@kau.edu.sa  

التشابهات والاختلافات بين مسألتين بارزتين في هذه  ورقة البحث تستكشف .المستخلص
)و ن  البولانيةمواءمة المنحنيات رياضيات الدوال البولانية. أولى هاتين المسألتين هي مسألة 

𝑧 ب(، التي تعرف أيضا باسم مسألة الاستكمال البولاني، وهي تتعلق برسم المنحنى = 𝑓(𝑿)  
z𝑘بحيث يمر خلال النقاط  = 𝑓(𝐗𝑘)  حيث𝑘 = 1,2, … , 𝑚 أما المسألة الثانية فهي .

معلوم جميع  𝑓(𝑿) المسألة العكسية )س ع( للمعادلات البولانية التي توجد دالة بولانية 
شرطا للاتساق ليتم حلها، فإن  مواءمة المنحنيات البولانيةأصفارها. وبينما قد تحتاج مسألة 

المسألة العكسية للمعادلات البولانية ربما تستخدم شرط اتساق كمدخل لها. وفي حالة انعدام 
مواءمة شرط الاتساق تمثل المسألة العكسية للمعادلات البولانية حالة خاصة من مسألة 

z𝑘، شريطة أن تكون قيم النقاط المحددة يات البولانيةالمنحن يتم جميعها ووحدها مساوية للصفر.   
 .توضيح نتائجنا من خلال مثال تفصيلي نمطي

مواءمة المنحنيات البولانية، المسألة العكسية، المعادلات البولانية، شرط : كلمات مفتاحية
 .الاتساق، التفرد، الحلول الخاصة
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