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Abstract. We recently noticed the advancement and growth in the field of artificial intelligence 

and in its various branches such as Machine Learning (ML) and Deep Learning in various vital 

fields such as robotics, smart cars, smart cities, health care, software engineering and many other 

fields. Software bug prediction are one of the most important ML uses in software engineering. In 

addition, the feature selection is one of ML methods that aim to reduce a feature set that are used 

for building models. In this paper, we propose to use the Chi-Square feature selection method to 

calculate features importance, then to build a ML models, first by using top ten important features 

and second by using top five important features, based on three of well-known ML classifications 

algorithms, Support Vector Machine, Naïve Bayes and Linear Discriminant Analysis, with adding 

and exploring more about the effeteness of new metric of code smell intensity, the performance 

results of our approach against baseline achieved an improvements as average accuracy among 

nine datasets reaching up to 5.12%, 4.15% and 1% on the NB, SVM and LDA classifiers 

respectively. 
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1. Introduction 

Machine learning has the ability of offering 

automatic learning techniques, it considered as 

a dominant branch of artificial intelligence and 

it can extract common patterns from realistic 

dataset based on the different learning 

behaviors making an accurate and sophisticate 

decisions. There are many types of ML 

classification algorithms that proved their 

efficiency in most of research experiments like 

Support Vector Machine, Naive Bayes, 

Decision Tree and many others. In the field of 

software engineering, there are many of areas 

and applications that ML can help to cover 

them such as software testing, software quality 

estimation, software reuse qualification, 

software measurement selection, project 

management and bug prediction models. The 

software bug prediction (SBP) is one of hottest 

research area in software engineering which 

focuses on quality assurance, especially on 

topics of effort-aware prediction, manipulating 

the data and machine learning-based prediction 
[1,2]

.The software bug prediction models can 

predict if the software have bugs or not by 

using different ML classification algorithms, 

that can help in evaluating the quality of 

software, reduce the effort and time taken in 

testing and maintenance, increasing the 

accuracy of software project from the 

traditional methods. Most research of the 

software bug prediction has focused on the 

method of supervised learning, which is mainly 
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focus to use the categorize or labeled dataset in 

their learning algorithms of building bug 

prediction models. The concept of software 

bugs are known as programming error and 

most of the errors are coming from source code 

and software design. In another term, the 

software bug is also known as "software 

defects" that causes the software not 

performing its tasks as the programmer and 

customer needed. The SBP is such a method 

that mainly helps the domain of software 

testing and maintenance, it allows software 

engineers to assign the avaliable testing 

recources effectively for the defective 

instances, to improve the quality of software in 

the preliminary levels of  development life 

cycle. For example, if the available testing 

resources that we have are represents only 25% 

of all our resources, thereafter the software 

engineers can center their attention by 

assigning the available testing resources to fix 

the more likely instances to defect prone. 

Thence, we can get a high software quality 

with reduced cost and can deploy the 

maintainable software at the given time, 

because these reasons the SBP today is a hot 

research topic in the field of software 

engineering 
[1,3]

. We can build software bug 

prediction model by using historical bug data 

that gathered from old releases of the identical 

software projects. While the software metrics 

are used to measure the quality of software, 

there are different types of measurement that 

used for bug prediction and the most widely 

used are code and process metrics, the code 

metrics concerns with size and complexity of 

source code while the process concerns with 

code change, developer information and 

dependency analysis, there are various code 

metrics like line of code (LOC) metric, 

Cyclomatic Complexity, Halstead Metrics and 

others. The collected attributes from source 

code through software metrics it will be as 

inputs and it represents as features of software 

bug prediction. Interestingly, the modern 

measures of code smell severity proved itself in 

the software bug prediction models as an 

effective feature that increase the performance 

of SBP models, the code smells are known as 

an indicators of weak software design and 

implementation options, occurring as a results 

of software aging, or when the software is not 

properly designed from the beginning, exist 

some of complex or long classes, contains poor 

structured code likes the spaghetti code these 

only are a few examples of code smells that 

most likely to influence a software system and 

on the quality of produced source code 
[4]

. For 

the evaluations measures of bug prediction 

performance there are many various 

evaluations and is ordinarily based on the data 

exploration from a confusion matrix, while this 

matrix declare how some model are classified 

their two categories of buggy and non-buggy 

compared in contrast to the actual classification 

in the original dataset. Based on confusion 

matrix we can get the others evaluation 

measures of performance such as precision, F-

measure, G-measure, accuracy, area under the 

curve (AUC) and many others. One of the ML 

techniques used for enhancements is a Feature 

Selection, which is a step used in the level of 

data preprocessing and it aims to choose the 

best subset of features to use it in building the 

model of machine learning. Furthermore, the 

feature selection methods are used to improve 

the accuracy and reduce the complexity, it has 

proven itself in the practice to be as effective 

way in enhancing the efficiency of learning, 
[5,6]

. Feature selection reduces feature space of 

datasets, removes irrelevant, redundant or 

noisy data. In addition, it can increase the 

performance models of SBP. For the methods 

types of feature selection, there are three main 

types that known as wrapper, filter, and hybrid. 

The features evaluation in wrapper methods 

uses learning algorithms. While in the filter 

methods are not depended on any types of 

learning algorithm and it implemented on the 

level of preprocessing, also they rely on all 
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features of the training data. Finally the hybrid 

feature selectin gathering the characteristic of 

both method wrapper and filter 
[6]

.In our study 

we only center our attention on the filter 

feature selection method represented by Chi-

square method (X
2
) 

[7]
. The evaluation of Chi-

squared attribute it done by evaluates the worth 

of a feature by computing the value of the chi-

squared statistic with respect to the class. The 

initial hypothesis H0 is the assumption that the 

two features are unrelated, and it is tested by 

chi-squared formula 
[9]

.  

 
Where Oij is the observed frequency and Eij is 

the expected (theoretical) frequency, asserted 

by the null hypothesis. The greater the value of 

X
2
, the greater the evidence against the 

hypothesis H0 is [8]. Different research studies 

use the Chi-square Feature selection 
[5, 10, 11]

. 

The outline of the paper is as follows: 

reviews a few of related works in Section 2, the 

proposed approach in Section 3, results and 

discussion in Section 4 and finally the 

conclusion and future work. 

2. Related Works 

In the research of Z. Xu et al. 
[15]

, they 

made an empirical study to discover the impact 

of thirty-two types of feature selection methods 

on the software defect prediction performance. 

They have used three datasets from NASA and 

AEEEM in their studies for comparing the 

different methods of feature selection and to 

identify a set of worthy methods. Their results 

of feature selection methods displaying notable 

differences among the three datasets. In 

general, they found that the wrapper and filter 

based feature selection methods gives the finest 

performances and these kind of methods are 

tend to spend more time or select more number 

of features. Nearly all the clustering and some 

types of filter based methods can gives 

satisfying results with less time, fewer numbers 

of features and we can understand how 

methods works easily. Their research study 

have a significant value and through this kind 

of studies we can choose the suitable feature 

selection methods based on our statues and 

adding some of additional criteria. 

Ye Xia et al. 
[16]

, they have used different 

methods of feature selection aiming to reduce 

the dimensionality and determining the most 

important software metrics. For the machine 

learning classifiers they used Naïve Bayes, 

Decision Tree (DT) and support vector 

machine, in the experiment they used the 

dataset of NASA and it shows a comparative 

result, giving that instead of using 22 or more 

metrics, only less than ten metrics can gain 

better prediction performance. Shivaji et al.
 [14] 

investigated the influence of multiple wrapper 

and filter feature selection techniques while the 

Chi-Square one of them on eleven software 

projects. For improving the bug prediction of 

the code change based. They conducted that if 

eliminating 90% from the original set of 

features, the feature selection techniques could 

improve the performance of models. In a 

research study of Kalai Magal et al.
[13]

, authors 

have been studied and compared some of 

feature selection techniques likes information 

gain (IG), correlation-based feature selection 

(CFS) and gain ratio (GR) for Software Defect 

Prediction, they used a five types of machine 

learning classifiers to compare results and they 

conduct to the results of Random Forest 

classifier provides the high accuracy among 

them, they also gathered the correlation-based 

feature selection with the algorithm of random 

forest and they found a high percentage of 

results that get up to 98.3%. Fabio Palomba et 

al. 
[12] 

they evaluate the significance of using 

the severity of code smells measure, 

specifically in the term of code smell intensity 

by adding it as new feature with existing 

features of bug prediction models that based on 
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both metrics of process and product, then 

comparing the outputs result of the new created 

models to explore the benefits of adding the 

intensity index opposed to four of  latest state 

of art models in the baseline, which are without 

the intensity index is helpful to increase the 

performances. The outputs result of a new 

model displays that, when they added the code 

smell intensity as new feature (predictor), the 

accuracy increases and reaching to an 

improvement up to 21% by the F-Measure. 

They assessing the actual obtained information 

that given by the intensity feature with respect 

to the other different software metrics in the 

model and they note that the feature of 

intensity is a relevant feature for the process 

and product software metrics and it gives a 

positive and valuable contribution to the latest 

state of arts models of bug prediction. 

3. Proposed Approach 

The main steps of our proposed approach 

illustrated in the Fig.1, where each step will 

described in detail. 

 

Fig. 1. Main levels of the proposed approach. 

A. Dataset 

Table 1 provides statistics about the 

number of instances and distribution of class 

labels of each dataset used in this study. The 

nine datasets that we used are shared and 

publically available 
[18]

, while they're originally 

collect the data from the dataset produced by 

Jureczko et al.
[17]

 that contains 20 types of 

structural metrics as described in Table 2, 

while Palomba et al. 
[12]

 attached the new 

feature of code smell intensity by measuring 

the code smell severity and some of other 

features.  

Table 1. Details of our experiments datasets. 

System 

Name 
Releases Instances 

Buggy 

Instances 

Non- 

Buggy 

Instanc

es 

Apache 

Ant 

Ant-1.3 125 20 105 

Ant-1.4 178 40 138 

Ant-1.5 293 32 261 

Ant-1.6 351 92 259 

Ant-1.7 745 166 579 

Apache 

Camel 

Camel-

1.0 
339 13 326 

Camel-

1.2 
608 216 392 

Camel-

1.4 
872 145 727 

Camel-

1.6 
965 188 777 

Table 2. Summary of structural metrics for the datasets of 

each software project. 

Abbrev Feature Type 

WMC 
Weighted Methods per 

Class 
Numerical 

DIT Depth of Inheritance Tree Numerical 

NOC Number of Children Numerical 

CBO 
Coupling between Object 

classes 
Numerical 

RFC Response for a Class Numerical 

LCOM 
Lack of Cohesion in 

Methods 
Numerical 

CA Afferent Couplings Numerical 

CE Efferent Couplings Numerical 

NPM Number of Public Methods Numerical 

LCOM3 
Normalized version of 

LCOM 
Numerical 

LOC Lines of Code Numerical 

DAM Data Access Metric Numerical 

MOA Measure Of Aggregation Numerical 
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MFA 
Measure of Functional 

Abstraction 
Numerical 

CAM Cohesion Among Methods Numerical 

IC Inheritance Coupling Numerical 

CBM Coupling Between Methods Numerical 

AMC 
Average Method 

Complexity 
Numerical 

MAX_CC 
Maximum values of 

methods in the same class 
Numerical 

AVG_CC 
Mean values of methods in 

the same class 
Numerical 

B. Pre-processing 

1- Data Cleaning and Preparing 

In this step of data preprocessing we had 

deleted the invaluable, redundant and 

undesirable features, We also delete the other 

new software metrics that added by the 

researchers 
[12]

 to the original data and we keep 

only the 20 structural metrics provided by 

Jureczko et al. + intensity metrics of Palomba 

et al. to become 21 features. In fact, the column 

that used for classify if the class is buggy or 

non-buggy, it is out of counting here because it 

is necessary to be present in all cases for the 

purpose of classification. 

2- Data Partition 

After we prepared the data, we divide it 

into two parts training and testing, we divide 

the data to be as 70% for training and 30% for 

testing in the all releases as the most works of 

machine learning researches. 

3- Data Resampling 

For the data resampling, we use the well-

known k-Fold Cross-Validation while the k is 

equals to 10. 

C. Chi-Square Feature Selection 

The Chi-Square is a filter based feature 

selection method and it is simply used to 

calculates and determine how closely the 

observed data fit the expected data for all 

features set. We aim to use it and to reduce the 

current dimension of dataset that contains 21 

features. 

D. Machine Learning Classifiers 

In this study, three of machine learning 

supervised classification methods are used, the 

Naïve Bayes (NB), Support Vector Machine 

(SVM), and linear discriminant analysis (LDA) 

methods to train the selected features data 

obtained by the Chi-Square feature selection 

and to generate models, then to test these 

generated models through testing data to 

evaluates the effeteness of models. Naïve 

Bayes is a machine-learning algorithm used for 

classification problem and it based on Bayesian 

theorem. Naïve Bayes offering high speed and 

accuracy in the large scale data processing, it 

assumes that the influence of a given class's 

attributes is independent and this assumption is 

called class conditional independent
 [16]

. 

Support Vector Machine was introduced by 

Vapnik and Cortes (1995). It is a very popular 

classifier and it has been widely used in many 

of machine learning applications. It considered 

as one of the most effective classification 

methods, one of its advantages is minimizing 

the complexity of the large data set by break 

the dataset into many classes before decide the 

effected vectors that belong to each class. 

Thereby, the decision making of feature 

selection will be simplified. The Linear 

Discriminant Analysis is a well known ML 

technique that used for classification to 

predicting classes. One of its main advantages, 

compared to other ML classification 

algorithms, are that the prediction is easy and 

the model is interpretable. Also it is a very 

widespread method used for   dimensionality 

reduction problems 
[19, 20]

. 

E. Evaluation Measure of Results 

In our study, we used the accuracy, 

which is a metric for evaluating classification 

of machine learning models. 

Informally, accuracy is the fraction of 

predictions our model got right 
[21]

. Formally, 

the accuracy following this formula: 
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 Total Number of Correct Predictions  

 

4. Results and Discussion 

In this research study, we aiming to explore 

more about the effeteness of the code smell 

metric represented by the intensity index, reduce 

the total number of features on the training data, 

increase the predictions performance and the total 

number of truly predicted instances through 

applying the Chi-Square feature selection. We 

selected nine releases of two software systems 

namely as APACHE ANT and APACHE 

CAMEL among of all the available datasets, 

because it has a relatively comparable number of 

instances in each release and is equal to 4476 

rows instances as total of all releases with 34 

columns in each release which contains the 

different valuable software metrics (i.e. structural, 

code smell (intensity), scattering.). In the data 

cleaning step, we delete the undesirable features 

such as project.name, version, name, bug and 

is.buggy. We also delete the other new software 

metrics that added by the researchers [90] to the 

original data namely as fi.changes, ostrand, 

scattering, ana, acm, arl and acpd, we keep only 

the feature of intensity, reaching at the end to 

have only a 22 columns represents 21 features of 

structural metrics and intensity while the 

remaining column is for the purpose of instances 

classification, to represent the baseline of study. 

Then on each release of dataset we divide the 

dataset to be as 70% for training and the 

remaining 30% for testing, after that we use the 

set of training data to be as input for the next step 

of Chi-Square feature selection to make its 

calculation of features importance, firstly by 

select the K = 10, to select the top ten features 

with high importance value Subsequently, we use 

the set of 10 selected features from the training 

dataset to generate three different models by 

using SVM, NB and LDA classifiers that work 

perfectly for classification problem, in addition to 

using the 10-fold cross validation as a resampling 

of training data to select best model, then we test 

the selected model by using the remaining testing 

data to obtain the predictions of software buggy 

and non-buggy that represented as a confusion 

matrix to evaluate the accuracy of models. 

Secondly, by repeating same steps except 

selecting K of Chi-Square to equal 5 to select the 

top five features with high importance value and 

we follow the same steps again to acquire the 

results of new models accuracy. We note that the 

intensity features of code smell metrics it always 

selected by Chi-Square method and has the higher 

importance value among all of other features in 

all cases of the nine datasets. From the Table 3, 

we can note the results of accuracy on the nine 

datasets when we applied to baseline, top 10 

selected features and top 5 selected features with 

classifiers of SVM, NB and LDA respectively, 

from the baseline, the LDA classifiers nearly 

gives best accuracy between all datasets also it 

has the best average accuracy among other 

classifiers that reach to 86.74% while SVM is 

86.06% and NB is 81.56%, while the results of 

top ten selected features shows great 

improvements with the SVM classifier, which is 

improved by 2.32% and it reached to an accuracy 

of 88.38% overcoming the LDA that got 87.19% 

with improvements by 0.45% and NB that got 

83.56% with great improvements by 2.00% than 

baseline. Eventually after we choose the top five 

features which is nearly means the quart number 

of baseline, we conduct to more improvements 

than baseline and top ten selected features. We 

note from the results of Table 3, the SVM reach 

to 90.21% of average accuracy with 

improvements by 4.15% than baseline and 1.83% 

than top ten features, while the second best 

classifiers is the LDA that reach to 87.74% and 

improved by 1.00% from baseline and 0.55% 

than top ten, finally the NB which is improves by 

5.11% from the performance accuracy of baseline 

set of features and by 3.11% than top ten features. 

On the other side if we want to discover more 
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about the number of cases that are truly 

predicated in each model. Table 4 summarize the 

results of all instances in the baseline, top ten and 

top five features on each dataset, we note the 

highest number of truly classified of baseline for 

all nine datasets achieved by the LDA classifiers, 

which is reach to 1142 instances, while the SVM 

1132 and NB 1084 instances. When we look on 

the results of top ten selected features, we note the 

improvements on all classifiers that reach to be 

1172 truly classified with SVM that means it 

increases by 40 more than same classifiers of 

baseline and for the NB classifiers it enhanced by 

27 instances reaching up to 1111 of truly 

classified and lastly the LDA improved by 4 to 

reach at 1146 truly classified instances. The 

results of top five features achieve another better 

improvements than baseline, where the SVM 

reach to truly classify 1200 instances and better 

than baseline by 68 and better than top ten by 28, 

while the NB got 1137 and improved by 53 more 

than baseline and by 26 more than top ten and 

finally the LDA classifier is reach to 1151 truly 

classified which is means there are nine instances 

more than the features set of baseline and more 

than top ten features by five. Figure 2 

summarized the number of truly classified 

instances for our approach when using top ten and 

top five selected features via Chi Square 

comparing to the baseline. 
 

Table 3. Accuracy of baseline, top ten and top five selected features via chi square.(higher model accuracy of each dataset 

shown in bold). 

Dataset Name 
#n of 

instances 

Baseline K=10 Features K=5 Features 

SVM NB LDA SVM NB LDA SVM NB LDA 

apache-ant-1.3 125 91.89% 81.08% 91.89% 91.89% 78.38% 91.89% 91.89% 89.19% 94.59% 

apache-ant-1.4 178 77.36% 75.47% 79.25% 79.25% 83.02% 83.02% 84.91% 83.02% 81.13% 

apache-ant-1.5 293 91.95% 86.21% 95.40% 91.95% 88.51% 95.40% 93.10% 91.95% 95.40% 

apache-ant-1.6 351 89.42% 83.65% 86.54% 88.46% 82.69% 85.58% 89.42% 90.38% 89.42% 

apache-ant-1.7 745 86.04% 82.88% 86.04% 87.84% 83.78% 85.59% 87.84% 84.23% 86.49% 

apache-camel-1.0 339 97.00% 94.00% 97.00% 97.00% 96.00% 97.00% 97.00% 98.00% 97.00% 

apache-camel-1.2 608 70.17% 64.64% 71.27% 85.08% 70.72% 71.82% 87.29% 72.38% 71.27% 

apache-camel-1.4 872 86.97% 81.99% 88.89% 88.12% 83.14% 89.27% 87.36% 85.44% 88.89% 

apache-camel-1.6 965 83.74% 84.08% 84.43% 85.81% 85.81% 85.12% 93.08% 85.47% 85.47% 

Average Accuracy 86.06% 81.56% 86.74% 88.38% 83.56% 87.19% 90.21% 86.67% 87.74% 

Improvements - - - 2.32% 2.00% 0.45% 4.15% 5.11% 1.00% 

 

Table 4. Comparison of truly classified instances for each classifier between baseline, top ten and top five (higher number of 

truly classified instances on each dataset shown in bold ). 

Dataset Name #n of Rows 
Baseline K=10 Features K=5 Features 

SVM NB LDA SVM NB LDA SVM NB LDA 

apache-ant-1.3 125 34 30 34 34 29 34 34 33 35 

apache-ant-1.4 178 41 40 42 42 44 44 45 44 43 

apache-ant-1.5 293 80 75 83 80 77 83 81 80 83 

apache-ant-1.6 351 93 87 90 92 86 89 93 94 93 

apache-ant-1.7 745 191 184 191 195 186 190 195 187 192 

apache-camel-1.0 339 97 94 97 97 96 97 97 98 97 

apache-camel-1.2 608 127 117 129 154 128 130 158 131 129 

apache-camel-1.4 872 227 214 232 230 217 233 228 223 232 

apache-camel-1.6 965 242 243 244 248 248 246 269 247 247 

Truly Classified on all dataset 1132 1084 1142 1172 1111 1146 1200 1137 1151 
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Fig. 2. The improvements of correct classifications of top ten and top five selected features via Chi Square comparing to the 

baseline (The prediction algorithms are ranked from right to left). 
 

5. Conclusion and Future Work 

In this paper, we note from the results of 

our proposed approach by using the Chi-

Square feature selection first by select top ten 

important features and second by select top 

five features in building machine learning 

models of SVM, NB and LDA the valuable 

improvements in terms of accuracy after the 

feature selection, The proposed approach 

proved their effectiveness on all three 

classifiers, especially with the NB and SVM 

which are improved by 5.11% and 4.15%, also 

we achieved 90.21% as average accuracy of 

our experiments datasets by the SVM with 

reducing the total number of features from 21 

to only 5 features, in addition to increasing the 

total number of truly predicted instances 

reaching to an improvements by 68 instances 

more than baseline with SVM classifier, on the 

other hand through our experiments we noticed 

the significant of adding the intensity index as 

new feature, which is selected as the first 

important feature by the Chi-Square method in 

all our cases of datasets.  

Finally, for the future work we intend to 

expand our study by applying the proposed 

approach on more different machine learning 

classifiers such as neural network and deep 

neural network to investigate their applicability 

and performances, also to investigate more 

about another new software metrics than 

intensity of code smell to include them with 

existing baseline.   
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 أسموب تحديد الخصائص لتحسين الدقة من التنبؤ بالأخطاء البرمجية
  عبدالله مهدي القرني و عماد نبيل كائن

 المممكة العربية السعودية ،جدة ،عبدالعزيزكمية الحاسبات وتقنية المعمومات، جامعة الممك 
ekaen0001@stu.kau.edu.sa 

 ،التطور والنمو في مجال الذكاء الاصطناعي وفي فروعه المختمفة لاحظنا مؤخرًا. المستخمص
والسيارات  ،مثل الروبوتات ،مثل التعمم الآلي والتعمم العميق في مختمف المجالات الحيوية

وغيرها الكثير من المجالات. وتعد  نوهندسة البرمجيات ،والرعاية الصحية ،والمدن الذكية ،الذكية
 .نماذج التنبؤ بالأخطاء البرمجية أحد أهم استخدامات التعمم الآلي في هندسة البرمجيات

فإن تحديد الخصائص هو أحد طرق تعمم الآلة والتي تهدف إلى تقميص  ،وبالإضافة إلى ذلك
والتي من خلالها يمكننا التصنيف بوجود الأخطاء  ،رمجياتمجموعة الخصائص أو صفات الب

ومن خلال بحثنا هذا نقترح استخدام طريقة تحديد الخصائص بمربع كاي  .البرمجية من عدمه
 ،آلة المتجهات الداعمة :وهي ،وتقييمها عمى ثلاثة خوارزميات معروفة جيدًا في مجال تعمم الآلة

مصدر معرفة ي، باستخدام مجموعة من البيانات المفتوحة الوتحميل التمييز الخط ،وبايز البسيط
وهي تعرف بأنها  ،والمسمى بكثافة رائحة الكود ،ليها المقياس القيم الجديدإ اباسم "أباتشي"، مضافً 

وذلك بهدف  ،علامات داخل الكود تدل عمى أن هناك خمل في كود البرنامج أو في تصميمه
برمجية وزيادة عدد التصنيفات الصحيحة. نتائج طريقتنا تحسين الدقة لمتنبؤ من الأخطاء ال

٪ عمى دقة الأداء من مصنفات بايز  .٪،  2..5٪،  5..2حققت تحسينات تصل إلى 
وتم تخفيض مجموعة  .عمى التوالي نوتحميل التمييز الخطي ،وآلة المتجهات الداعمة ،البسيط

زيادة عدد  توتم ،يزات الأصميةا الربع من عدد مجموعة الموالتي مثمت تقريبً  ،الخصائص
وقد كانت أفضل النتائج التي تم الحصول عميها خلال  ،الحالات التي تم توقعها بشكل صحيح

ووصمت إلى زيادة تقدر بثمان وستون حالة توقع صحيح  ،مصنف آلة المتجهات الداعمة
خصائص باستخدام الخصائص المحددة الفرعية عن الحالات الصحيحة باستخدام مجموعة ال

 .كاممة
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