
JKAU: Comp. IT. Sci., Vol. 8 No. 1, pp: 35 – 44 (1440 A.H. / 2019 A.D.)

Doi: 10.4197/Comp. 8-1.4

35

Feature Selection Approach for Improving the Accuracy of Software Bug

Prediction

Emad Kaen and Abdullah Algarni

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi

Arabia

ekaen0001@stu.kau.edu.sa

Abstract. We recently noticed the advancement and growth in the field of artificial intelligence

and in its various branches such as Machine Learning (ML) and Deep Learning in various vital

fields such as robotics, smart cars, smart cities, health care, software engineering and many other

fields. Software bug prediction are one of the most important ML uses in software engineering. In

addition, the feature selection is one of ML methods that aim to reduce a feature set that are used

for building models. In this paper, we propose to use the Chi-Square feature selection method to

calculate features importance, then to build a ML models, first by using top ten important features

and second by using top five important features, based on three of well-known ML classifications

algorithms, Support Vector Machine, Naïve Bayes and Linear Discriminant Analysis, with adding

and exploring more about the effeteness of new metric of code smell intensity, the performance

results of our approach against baseline achieved an improvements as average accuracy among

nine datasets reaching up to 5.12%, 4.15% and 1% on the NB, SVM and LDA classifiers

respectively.

Keywords: Machine Learning, Software Bug Prediction, Chi-Square.

1. Introduction

Machine learning has the ability of offering

automatic learning techniques, it considered as

a dominant branch of artificial intelligence and

it can extract common patterns from realistic

dataset based on the different learning

behaviors making an accurate and sophisticate

decisions. There are many types of ML

classification algorithms that proved their

efficiency in most of research experiments like

Support Vector Machine, Naive Bayes,

Decision Tree and many others. In the field of

software engineering, there are many of areas

and applications that ML can help to cover

them such as software testing, software quality

estimation, software reuse qualification,

software measurement selection, project

management and bug prediction models. The

software bug prediction (SBP) is one of hottest

research area in software engineering which

focuses on quality assurance, especially on

topics of effort-aware prediction, manipulating

the data and machine learning-based prediction
[1,2]

.The software bug prediction models can

predict if the software have bugs or not by

using different ML classification algorithms,

that can help in evaluating the quality of

software, reduce the effort and time taken in

testing and maintenance, increasing the

accuracy of software project from the

traditional methods. Most research of the

software bug prediction has focused on the

method of supervised learning, which is mainly

36 Emad Kaen and Abdullah Algarni

focus to use the categorize or labeled dataset in

their learning algorithms of building bug

prediction models. The concept of software

bugs are known as programming error and

most of the errors are coming from source code

and software design. In another term, the

software bug is also known as "software

defects" that causes the software not

performing its tasks as the programmer and

customer needed. The SBP is such a method

that mainly helps the domain of software

testing and maintenance, it allows software

engineers to assign the avaliable testing

recources effectively for the defective

instances, to improve the quality of software in

the preliminary levels of development life

cycle. For example, if the available testing

resources that we have are represents only 25%

of all our resources, thereafter the software

engineers can center their attention by

assigning the available testing resources to fix

the more likely instances to defect prone.

Thence, we can get a high software quality

with reduced cost and can deploy the

maintainable software at the given time,

because these reasons the SBP today is a hot

research topic in the field of software

engineering
[1,3]

. We can build software bug

prediction model by using historical bug data

that gathered from old releases of the identical

software projects. While the software metrics

are used to measure the quality of software,

there are different types of measurement that

used for bug prediction and the most widely

used are code and process metrics, the code

metrics concerns with size and complexity of

source code while the process concerns with

code change, developer information and

dependency analysis, there are various code

metrics like line of code (LOC) metric,

Cyclomatic Complexity, Halstead Metrics and

others. The collected attributes from source

code through software metrics it will be as

inputs and it represents as features of software

bug prediction. Interestingly, the modern

measures of code smell severity proved itself in

the software bug prediction models as an

effective feature that increase the performance

of SBP models, the code smells are known as

an indicators of weak software design and

implementation options, occurring as a results

of software aging, or when the software is not

properly designed from the beginning, exist

some of complex or long classes, contains poor

structured code likes the spaghetti code these

only are a few examples of code smells that

most likely to influence a software system and

on the quality of produced source code
[4]

. For

the evaluations measures of bug prediction

performance there are many various

evaluations and is ordinarily based on the data

exploration from a confusion matrix, while this

matrix declare how some model are classified

their two categories of buggy and non-buggy

compared in contrast to the actual classification

in the original dataset. Based on confusion

matrix we can get the others evaluation

measures of performance such as precision, F-

measure, G-measure, accuracy, area under the

curve (AUC) and many others. One of the ML

techniques used for enhancements is a Feature

Selection, which is a step used in the level of

data preprocessing and it aims to choose the

best subset of features to use it in building the

model of machine learning. Furthermore, the

feature selection methods are used to improve

the accuracy and reduce the complexity, it has

proven itself in the practice to be as effective

way in enhancing the efficiency of learning,
[5,6]

. Feature selection reduces feature space of

datasets, removes irrelevant, redundant or

noisy data. In addition, it can increase the

performance models of SBP. For the methods

types of feature selection, there are three main

types that known as wrapper, filter, and hybrid.

The features evaluation in wrapper methods

uses learning algorithms. While in the filter

methods are not depended on any types of

learning algorithm and it implemented on the

level of preprocessing, also they rely on all

Feature Selection Approach for Improving the Accuracy of Software Bug Prediction 37

features of the training data. Finally the hybrid

feature selectin gathering the characteristic of

both method wrapper and filter
[6]

.In our study

we only center our attention on the filter

feature selection method represented by Chi-

square method (X
2
)

[7]
. The evaluation of Chi-

squared attribute it done by evaluates the worth

of a feature by computing the value of the chi-

squared statistic with respect to the class. The

initial hypothesis H0 is the assumption that the

two features are unrelated, and it is tested by

chi-squared formula
[9]

.

Where Oij is the observed frequency and Eij is

the expected (theoretical) frequency, asserted

by the null hypothesis. The greater the value of

X
2
, the greater the evidence against the

hypothesis H0 is [8]. Different research studies

use the Chi-square Feature selection
[5, 10, 11]

.

The outline of the paper is as follows:

reviews a few of related works in Section 2, the

proposed approach in Section 3, results and

discussion in Section 4 and finally the

conclusion and future work.

2. Related Works

In the research of Z. Xu et al.
[15]

, they

made an empirical study to discover the impact

of thirty-two types of feature selection methods

on the software defect prediction performance.

They have used three datasets from NASA and

AEEEM in their studies for comparing the

different methods of feature selection and to

identify a set of worthy methods. Their results

of feature selection methods displaying notable

differences among the three datasets. In

general, they found that the wrapper and filter

based feature selection methods gives the finest

performances and these kind of methods are

tend to spend more time or select more number

of features. Nearly all the clustering and some

types of filter based methods can gives

satisfying results with less time, fewer numbers

of features and we can understand how

methods works easily. Their research study

have a significant value and through this kind

of studies we can choose the suitable feature

selection methods based on our statues and

adding some of additional criteria.

Ye Xia et al.
[16]

, they have used different

methods of feature selection aiming to reduce

the dimensionality and determining the most

important software metrics. For the machine

learning classifiers they used Naïve Bayes,

Decision Tree (DT) and support vector

machine, in the experiment they used the

dataset of NASA and it shows a comparative

result, giving that instead of using 22 or more

metrics, only less than ten metrics can gain

better prediction performance. Shivaji et al.
 [14]

investigated the influence of multiple wrapper

and filter feature selection techniques while the

Chi-Square one of them on eleven software

projects. For improving the bug prediction of

the code change based. They conducted that if

eliminating 90% from the original set of

features, the feature selection techniques could

improve the performance of models. In a

research study of Kalai Magal et al.
[13]

, authors

have been studied and compared some of

feature selection techniques likes information

gain (IG), correlation-based feature selection

(CFS) and gain ratio (GR) for Software Defect

Prediction, they used a five types of machine

learning classifiers to compare results and they

conduct to the results of Random Forest

classifier provides the high accuracy among

them, they also gathered the correlation-based

feature selection with the algorithm of random

forest and they found a high percentage of

results that get up to 98.3%. Fabio Palomba et

al.
[12]

they evaluate the significance of using

the severity of code smells measure,

specifically in the term of code smell intensity

by adding it as new feature with existing

features of bug prediction models that based on

38 Emad Kaen and Abdullah Algarni

both metrics of process and product, then

comparing the outputs result of the new created

models to explore the benefits of adding the

intensity index opposed to four of latest state

of art models in the baseline, which are without

the intensity index is helpful to increase the

performances. The outputs result of a new

model displays that, when they added the code

smell intensity as new feature (predictor), the

accuracy increases and reaching to an

improvement up to 21% by the F-Measure.

They assessing the actual obtained information

that given by the intensity feature with respect

to the other different software metrics in the

model and they note that the feature of

intensity is a relevant feature for the process

and product software metrics and it gives a

positive and valuable contribution to the latest

state of arts models of bug prediction.

3. Proposed Approach

The main steps of our proposed approach

illustrated in the Fig.1, where each step will

described in detail.

Fig. 1. Main levels of the proposed approach.

A. Dataset

Table 1 provides statistics about the

number of instances and distribution of class

labels of each dataset used in this study. The

nine datasets that we used are shared and

publically available
[18]

, while they're originally

collect the data from the dataset produced by

Jureczko et al.
[17]

 that contains 20 types of

structural metrics as described in Table 2,

while Palomba et al.
[12]

 attached the new

feature of code smell intensity by measuring

the code smell severity and some of other

features.

Table 1. Details of our experiments datasets.

System

Name
Releases Instances

Buggy

Instances

Non-

Buggy

Instanc

es

Apache

Ant

Ant-1.3 125 20 105

Ant-1.4 178 40 138

Ant-1.5 293 32 261

Ant-1.6 351 92 259

Ant-1.7 745 166 579

Apache

Camel

Camel-

1.0
339 13 326

Camel-

1.2
608 216 392

Camel-

1.4
872 145 727

Camel-

1.6
965 188 777

Table 2. Summary of structural metrics for the datasets of

each software project.

Abbrev Feature Type

WMC
Weighted Methods per

Class
Numerical

DIT Depth of Inheritance Tree Numerical

NOC Number of Children Numerical

CBO
Coupling between Object

classes
Numerical

RFC Response for a Class Numerical

LCOM
Lack of Cohesion in

Methods
Numerical

CA Afferent Couplings Numerical

CE Efferent Couplings Numerical

NPM Number of Public Methods Numerical

LCOM3
Normalized version of

LCOM
Numerical

LOC Lines of Code Numerical

DAM Data Access Metric Numerical

MOA Measure Of Aggregation Numerical

Feature Selection Approach for Improving the Accuracy of Software Bug Prediction 39

MFA
Measure of Functional

Abstraction
Numerical

CAM Cohesion Among Methods Numerical

IC Inheritance Coupling Numerical

CBM Coupling Between Methods Numerical

AMC
Average Method

Complexity
Numerical

MAX_CC
Maximum values of

methods in the same class
Numerical

AVG_CC
Mean values of methods in

the same class
Numerical

B. Pre-processing

1- Data Cleaning and Preparing

In this step of data preprocessing we had

deleted the invaluable, redundant and

undesirable features, We also delete the other

new software metrics that added by the

researchers
[12]

 to the original data and we keep

only the 20 structural metrics provided by

Jureczko et al. + intensity metrics of Palomba

et al. to become 21 features. In fact, the column

that used for classify if the class is buggy or

non-buggy, it is out of counting here because it

is necessary to be present in all cases for the

purpose of classification.

2- Data Partition

After we prepared the data, we divide it

into two parts training and testing, we divide

the data to be as 70% for training and 30% for

testing in the all releases as the most works of

machine learning researches.

3- Data Resampling

For the data resampling, we use the well-

known k-Fold Cross-Validation while the k is

equals to 10.

C. Chi-Square Feature Selection

The Chi-Square is a filter based feature

selection method and it is simply used to

calculates and determine how closely the

observed data fit the expected data for all

features set. We aim to use it and to reduce the

current dimension of dataset that contains 21

features.

D. Machine Learning Classifiers

In this study, three of machine learning

supervised classification methods are used, the

Naïve Bayes (NB), Support Vector Machine

(SVM), and linear discriminant analysis (LDA)

methods to train the selected features data

obtained by the Chi-Square feature selection

and to generate models, then to test these

generated models through testing data to

evaluates the effeteness of models. Naïve

Bayes is a machine-learning algorithm used for

classification problem and it based on Bayesian

theorem. Naïve Bayes offering high speed and

accuracy in the large scale data processing, it

assumes that the influence of a given class's

attributes is independent and this assumption is

called class conditional independent
 [16]

.

Support Vector Machine was introduced by

Vapnik and Cortes (1995). It is a very popular

classifier and it has been widely used in many

of machine learning applications. It considered

as one of the most effective classification

methods, one of its advantages is minimizing

the complexity of the large data set by break

the dataset into many classes before decide the

effected vectors that belong to each class.

Thereby, the decision making of feature

selection will be simplified. The Linear

Discriminant Analysis is a well known ML

technique that used for classification to

predicting classes. One of its main advantages,

compared to other ML classification

algorithms, are that the prediction is easy and

the model is interpretable. Also it is a very

widespread method used for dimensionality

reduction problems
[19, 20]

.

E. Evaluation Measure of Results

In our study, we used the accuracy,

which is a metric for evaluating classification

of machine learning models.

Informally, accuracy is the fraction of

predictions our model got right
[21]

. Formally,

the accuracy following this formula:

40 Emad Kaen and Abdullah Algarni

 Total Number of Correct Predictions

4. Results and Discussion

In this research study, we aiming to explore

more about the effeteness of the code smell

metric represented by the intensity index, reduce

the total number of features on the training data,

increase the predictions performance and the total

number of truly predicted instances through

applying the Chi-Square feature selection. We

selected nine releases of two software systems

namely as APACHE ANT and APACHE

CAMEL among of all the available datasets,

because it has a relatively comparable number of

instances in each release and is equal to 4476

rows instances as total of all releases with 34

columns in each release which contains the

different valuable software metrics (i.e. structural,

code smell (intensity), scattering.). In the data

cleaning step, we delete the undesirable features

such as project.name, version, name, bug and

is.buggy. We also delete the other new software

metrics that added by the researchers [90] to the

original data namely as fi.changes, ostrand,

scattering, ana, acm, arl and acpd, we keep only

the feature of intensity, reaching at the end to

have only a 22 columns represents 21 features of

structural metrics and intensity while the

remaining column is for the purpose of instances

classification, to represent the baseline of study.

Then on each release of dataset we divide the

dataset to be as 70% for training and the

remaining 30% for testing, after that we use the

set of training data to be as input for the next step

of Chi-Square feature selection to make its

calculation of features importance, firstly by

select the K = 10, to select the top ten features

with high importance value Subsequently, we use

the set of 10 selected features from the training

dataset to generate three different models by

using SVM, NB and LDA classifiers that work

perfectly for classification problem, in addition to

using the 10-fold cross validation as a resampling

of training data to select best model, then we test

the selected model by using the remaining testing

data to obtain the predictions of software buggy

and non-buggy that represented as a confusion

matrix to evaluate the accuracy of models.

Secondly, by repeating same steps except

selecting K of Chi-Square to equal 5 to select the

top five features with high importance value and

we follow the same steps again to acquire the

results of new models accuracy. We note that the

intensity features of code smell metrics it always

selected by Chi-Square method and has the higher

importance value among all of other features in

all cases of the nine datasets. From the Table 3,

we can note the results of accuracy on the nine

datasets when we applied to baseline, top 10

selected features and top 5 selected features with

classifiers of SVM, NB and LDA respectively,

from the baseline, the LDA classifiers nearly

gives best accuracy between all datasets also it

has the best average accuracy among other

classifiers that reach to 86.74% while SVM is

86.06% and NB is 81.56%, while the results of

top ten selected features shows great

improvements with the SVM classifier, which is

improved by 2.32% and it reached to an accuracy

of 88.38% overcoming the LDA that got 87.19%

with improvements by 0.45% and NB that got

83.56% with great improvements by 2.00% than

baseline. Eventually after we choose the top five

features which is nearly means the quart number

of baseline, we conduct to more improvements

than baseline and top ten selected features. We

note from the results of Table 3, the SVM reach

to 90.21% of average accuracy with

improvements by 4.15% than baseline and 1.83%

than top ten features, while the second best

classifiers is the LDA that reach to 87.74% and

improved by 1.00% from baseline and 0.55%

than top ten, finally the NB which is improves by

5.11% from the performance accuracy of baseline

set of features and by 3.11% than top ten features.

On the other side if we want to discover more

Feature Selection Approach for Improving the Accuracy of Software Bug Prediction 41

about the number of cases that are truly

predicated in each model. Table 4 summarize the

results of all instances in the baseline, top ten and

top five features on each dataset, we note the

highest number of truly classified of baseline for

all nine datasets achieved by the LDA classifiers,

which is reach to 1142 instances, while the SVM

1132 and NB 1084 instances. When we look on

the results of top ten selected features, we note the

improvements on all classifiers that reach to be

1172 truly classified with SVM that means it

increases by 40 more than same classifiers of

baseline and for the NB classifiers it enhanced by

27 instances reaching up to 1111 of truly

classified and lastly the LDA improved by 4 to

reach at 1146 truly classified instances. The

results of top five features achieve another better

improvements than baseline, where the SVM

reach to truly classify 1200 instances and better

than baseline by 68 and better than top ten by 28,

while the NB got 1137 and improved by 53 more

than baseline and by 26 more than top ten and

finally the LDA classifier is reach to 1151 truly

classified which is means there are nine instances

more than the features set of baseline and more

than top ten features by five. Figure 2

summarized the number of truly classified

instances for our approach when using top ten and

top five selected features via Chi Square

comparing to the baseline.

Table 3. Accuracy of baseline, top ten and top five selected features via chi square.(higher model accuracy of each dataset

shown in bold).

Dataset Name
#n of

instances

Baseline K=10 Features K=5 Features

SVM NB LDA SVM NB LDA SVM NB LDA

apache-ant-1.3 125 91.89% 81.08% 91.89% 91.89% 78.38% 91.89% 91.89% 89.19% 94.59%

apache-ant-1.4 178 77.36% 75.47% 79.25% 79.25% 83.02% 83.02% 84.91% 83.02% 81.13%

apache-ant-1.5 293 91.95% 86.21% 95.40% 91.95% 88.51% 95.40% 93.10% 91.95% 95.40%

apache-ant-1.6 351 89.42% 83.65% 86.54% 88.46% 82.69% 85.58% 89.42% 90.38% 89.42%

apache-ant-1.7 745 86.04% 82.88% 86.04% 87.84% 83.78% 85.59% 87.84% 84.23% 86.49%

apache-camel-1.0 339 97.00% 94.00% 97.00% 97.00% 96.00% 97.00% 97.00% 98.00% 97.00%

apache-camel-1.2 608 70.17% 64.64% 71.27% 85.08% 70.72% 71.82% 87.29% 72.38% 71.27%

apache-camel-1.4 872 86.97% 81.99% 88.89% 88.12% 83.14% 89.27% 87.36% 85.44% 88.89%

apache-camel-1.6 965 83.74% 84.08% 84.43% 85.81% 85.81% 85.12% 93.08% 85.47% 85.47%

Average Accuracy 86.06% 81.56% 86.74% 88.38% 83.56% 87.19% 90.21% 86.67% 87.74%

Improvements - - - 2.32% 2.00% 0.45% 4.15% 5.11% 1.00%

Table 4. Comparison of truly classified instances for each classifier between baseline, top ten and top five (higher number of

truly classified instances on each dataset shown in bold).

Dataset Name #n of Rows
Baseline K=10 Features K=5 Features

SVM NB LDA SVM NB LDA SVM NB LDA

apache-ant-1.3 125 34 30 34 34 29 34 34 33 35

apache-ant-1.4 178 41 40 42 42 44 44 45 44 43

apache-ant-1.5 293 80 75 83 80 77 83 81 80 83

apache-ant-1.6 351 93 87 90 92 86 89 93 94 93

apache-ant-1.7 745 191 184 191 195 186 190 195 187 192

apache-camel-1.0 339 97 94 97 97 96 97 97 98 97

apache-camel-1.2 608 127 117 129 154 128 130 158 131 129

apache-camel-1.4 872 227 214 232 230 217 233 228 223 232

apache-camel-1.6 965 242 243 244 248 248 246 269 247 247

Truly Classified on all dataset 1132 1084 1142 1172 1111 1146 1200 1137 1151

42 Emad Kaen and Abdullah Algarni

Fig. 2. The improvements of correct classifications of top ten and top five selected features via Chi Square comparing to the

baseline (The prediction algorithms are ranked from right to left).

5. Conclusion and Future Work

In this paper, we note from the results of

our proposed approach by using the Chi-

Square feature selection first by select top ten

important features and second by select top

five features in building machine learning

models of SVM, NB and LDA the valuable

improvements in terms of accuracy after the

feature selection, The proposed approach

proved their effectiveness on all three

classifiers, especially with the NB and SVM

which are improved by 5.11% and 4.15%, also

we achieved 90.21% as average accuracy of

our experiments datasets by the SVM with

reducing the total number of features from 21

to only 5 features, in addition to increasing the

total number of truly predicted instances

reaching to an improvements by 68 instances

more than baseline with SVM classifier, on the

other hand through our experiments we noticed

the significant of adding the intensity index as

new feature, which is selected as the first

important feature by the Chi-Square method in

all our cases of datasets.

Finally, for the future work we intend to

expand our study by applying the proposed

approach on more different machine learning

classifiers such as neural network and deep

neural network to investigate their applicability

and performances, also to investigate more

about another new software metrics than

intensity of code smell to include them with

existing baseline.

References

[1] Li, Z., Jing, X. and Zhu, X., Progress on approaches to

software defect prediction. IET Software, 12(3): 161-

175. doi:10.1049/iet-sen.2017.0148, 2018

[2] Hall, T., Beecham, S., Bowes, D., et al.: „A systematic

literature review on fault prediction performance in

software engineering‟, IEEE Trans. Softw. Eng., 38 (6):

1276–1304, 2012.

[3] Kamei, Y., and Shihab, E.: „Defect prediction:

accomplishments and future challenges‟. Proc. IEEE

23rd Int. Conf. Software Analysis, Evolution, and

Reengineering, pp: 33–45, 2016

[4] M. Fowler, Refactoring: improving the design of

existing code. Addison-Wesley, 1999.

[5] Ramaswami, M. and Bhaskaran, R., "A study on

feature selection techniques in educational data

mining," arXiv preprint arXiv:0912.3924, 2009.

[6] Koller, D. and Sahami, M., “Toward optimal feature

selection,” In: Proceedings of the Thirteenth

International Conference on Machine Learning, pp:

284–292, 1996.

[7] Liu, H. and Setiono, R., “Chi2: Feature selection and

discretization of numeric attributes”, Proc. IEEE 7th

International Conference on Tools with Artificial

Intelligence, 338-391, 1995.

[8] Novakovic, J., STRBAC P, Bulatovi c D. Toward

optimal feature selection using ranking methods and

classification algorithms. Yugosl J Oper Res,;21. ISSN:

0354e0243, EISSN: 2334-6043, 2011.

[9] Blum, A.I. and Langley, P., “Selection of relevant

features and examples in machine learning”, Artificial

Intelligence, 97 (1997) 245-271.

[10] Zaffar, M., Hashmani, M. A., Savita, K.S. and Rizvi,

S. S. H., “A Study of Feature Selection Algorithms for

Predicting Students Academic Performance”

International Journal of Advanced Computer Science

and Applications (IJACSA), 9(5), 2018.

Feature Selection Approach for Improving the Accuracy of Software Bug Prediction 43

[11] Rachburee, N. and Punlumjeak, W., "A comparison of

feature selection approach between greedy, IGratio,

Chi-square, and mRMR in educational mining", 7th

International Conference on Information Technology

and Electrical Engineering, pp: 420-424,

DOI:10.1109/ICITEED.2015.7408983, 2015.

[12] Palomba, F., Zanoni, M., Fontana, F. A., Lucia, A.

D. and Oliveto, R., “Toward a smell-aware bug

prediction model,” IEEE Transactions on Software

Engineering, vol. PP, no. 99, pp. 1–1, 2017.

[13] Kalai, M. R. and Jacob, S G., Improved Random

Forest Algorithm for Software Defect Prediction

through Data Mining Techniques, pp. 0975 – 8887,

2015.

[14] Shivaji, S., Whitehead, E. J., Akella, R. and Kim, S.,

Reducing features to improve code change-based bug

prediction. IEEE Transactions on Software

Engineering, 39(4): 552-569, 2013.

[15] Xu, Z., Liu, J., Yang, Z., An, G. and Jia, X., The

impact of feature selection on defect prediction

performance: An empirical comparison. In Software

Reliability Engineering (ISSRE), 2016 IEEE 27th

International Symposium, pp: 309–320. IEEE, 2016.

[16] Xia, Y., Yan, G. and Si, Q., “A Study on the

Significance of Software Metrics In Defect Prediction,”

IEEE Sixth International Symposium On Computational

Intelligence and Design, pp: 343-346, 2013.

[17] Jureczko, M. and Madeyski, L., “Towards identifying

software project clusters with regard to defect

prediction,” In: Proceedings of the 6th International

Conference on Predictive Models in Software

Engineering, ser. PROMISE ’10. New York, NY, USA:

ACM, pp: 9:1–9:10, 2010. [Online]. Available: http:

//doi.acm.org/10.1145/1868328.1868342

[18] https://figshare.com/articles/Toward_a_Smell-

aware_Bug_Prediction_Model/4542709

[19] https://www.displayr.com/linear-discriminant-analysis-

in-r-an- introduction/

[20] Tharwat, A., Gaber, T., Ibrahim, A. and Hassanien,

A., Linear discriminant analysis: A detailed tutorial. Ai

Communications. 30:169-190, 10.3233/AIC-170729,

2017.

[21] https://developers.google.com/machine-learning/crash-

course/classification/accuracy

https://figshare.com/articles/Toward_a_Smell-aware_Bug_Prediction_Model/4542709
https://figshare.com/articles/Toward_a_Smell-aware_Bug_Prediction_Model/4542709
https://www.displayr.com/linear-discriminant-analysis-in-r-an-%20%20introduction/
https://www.displayr.com/linear-discriminant-analysis-in-r-an-%20%20introduction/
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy

44 Emad Kaen and Abdullah Algarni

 أسموب تحديد الخصائص لتحسين الدقة من التنبؤ بالأخطاء البرمجية
 عبدالله مهدي القرني و عماد نبيل كائن

 المممكة العربية السعودية ،جدة ،عبدالعزيزكمية الحاسبات وتقنية المعمومات، جامعة الممك
ekaen0001@stu.kau.edu.sa

 ،التطور والنمو في مجال الذكاء الاصطناعي وفي فروعه المختمفة لاحظنا مؤخرًا. المستخمص
والسيارات ،مثل الروبوتات ،مثل التعمم الآلي والتعمم العميق في مختمف المجالات الحيوية

وغيرها الكثير من المجالات. وتعد نوهندسة البرمجيات ،والرعاية الصحية ،والمدن الذكية ،الذكية
 .نماذج التنبؤ بالأخطاء البرمجية أحد أهم استخدامات التعمم الآلي في هندسة البرمجيات

فإن تحديد الخصائص هو أحد طرق تعمم الآلة والتي تهدف إلى تقميص ،وبالإضافة إلى ذلك
والتي من خلالها يمكننا التصنيف بوجود الأخطاء ،رمجياتمجموعة الخصائص أو صفات الب

ومن خلال بحثنا هذا نقترح استخدام طريقة تحديد الخصائص بمربع كاي .البرمجية من عدمه
 ،آلة المتجهات الداعمة :وهي ،وتقييمها عمى ثلاثة خوارزميات معروفة جيدًا في مجال تعمم الآلة

مصدر معرفة ي، باستخدام مجموعة من البيانات المفتوحة الوتحميل التمييز الخط ،وبايز البسيط
وهي تعرف بأنها ،والمسمى بكثافة رائحة الكود ،ليها المقياس القيم الجديدإ اباسم "أباتشي"، مضافً

وذلك بهدف ،علامات داخل الكود تدل عمى أن هناك خمل في كود البرنامج أو في تصميمه
برمجية وزيادة عدد التصنيفات الصحيحة. نتائج طريقتنا تحسين الدقة لمتنبؤ من الأخطاء ال

٪ عمى دقة الأداء من مصنفات بايز .٪، 2..5٪، 5..2حققت تحسينات تصل إلى
وتم تخفيض مجموعة .عمى التوالي نوتحميل التمييز الخطي ،وآلة المتجهات الداعمة ،البسيط

زيادة عدد توتم ،يزات الأصميةا الربع من عدد مجموعة الموالتي مثمت تقريبً ،الخصائص
وقد كانت أفضل النتائج التي تم الحصول عميها خلال ،الحالات التي تم توقعها بشكل صحيح

ووصمت إلى زيادة تقدر بثمان وستون حالة توقع صحيح ،مصنف آلة المتجهات الداعمة
خصائص باستخدام الخصائص المحددة الفرعية عن الحالات الصحيحة باستخدام مجموعة ال

 .كاممة
 .كاي البرمجيات، مربع بأخطاء، التنبؤ الآلي التعلم: الكلمات المفتاحية

