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Abstract. As a result of the rapid growth of internet and smartphone technology, a novel platform
that attracts individuals and groups known as crowdsourcing emerged. Crowdsourcing is an
outsourcing platform that facilitates the accomplishment of costly tasks that consume long periods
of time when traditional methods are used. Spatial crowdsourcing (SC) is based on location; it
introduces a new framework for the physical world that enables a crowd to complete spatial-
temporal tasks. The primary issue in SC is the assignment and scheduling of a set of available
tasks to a set of proper workers based on different factors, such as the location of the task, the
distance between task location and hired worker location, temporal conditions, and incentive
rewards. In the real-world, SC applications need to optimize multi-objectives simultaneously to
exploit the utility of SC, and these objectives can be in conflict. However, there are few studies
that address this multi-objective optimization problem within a SC environment. Thus, the
authors propose a multi-objective task scheduling optimization problem in SC that aims to
maximize the number of completed tasks, minimize total travel cost, and ensure worker workload
balance. To solve this problem, we developed a method that adapts the multi-objective particle
swarm optimization (MOPSO) algorithm based on a proposed novel fitness function. The
experiments were conducted with both synthetic and real datasets; the experimental results show
that this approach provides acceptable initial results. As future work, we plan to improve the
effectiveness of our proposed algorithm by integrating a simple ranking strategy based on task
entropy and expected travel costs to enhance MOPSO performance.
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1. Introduction crowdsourcing has become

It is the authors’ responsibility to ensure that
the manuscript is novel, original and never
published in the past in any form any media.
The corresponding author should provide a
declarative statement that the paper is not an
extended or modified version of any
conference or journal, this manuscript is 100%
original and unpublished. The manuscript has
not been published in parts (figures/text/tables)
in any conference proceedings or journal in any
media or language or format. Recently,

45

outsourcing platform that facilitates the hiring
of workers to accomplish tasks that can
consume long periods of time when traditional
methods are used. Spatial crowdsourcing (SC)
is an extension of crowdsourcing in which
tasks are treated as spatial tasks that can only
be performed in specific physical locations. In
other words, the main difference between
traditional crowdsourcing and SC is that the
worker must physically move to the task’s
location to complete the work. In SC, there are
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three primary participants: Crowdsourcing
requesters, crowdsourcing platforms, and
crowd workers (workers). The requester
submits a task to the crowdsourcing platform,
which manages the task and connects the
worker and the requester, and the worker
performs the task (Fig. 1). The most common
issues in SC, as shown in Fig. 2, are task
assignment 23 security and privacy M,
incentive  mechanism !, and quallty
control™8: however, the core challenge is task
assignment [o110113]
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Fig. 1. Fig. 1. The Spatial Crowdsourcing Components.

Task assignment involves selecting a
suitable worker to complete a specific spatial
task or set of tasks correctly, under some
predefined constraints.

security issue
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Fig. 2. The Common Issues in Spatial Crowdsourcing.

L. Kazemi and C. Shahabi categorized
task assignment into the two models presented

1: Worker selected tasks (WSTs) and server
a53|gned tasks (SATS). In the WST model, the
worker selects and completes a task from the
available orders based on their own selection
criteria. In the SAT model, the task is assigned
by the server to a suitable worker in
accordance with certain constraints.

Researchers formulated task assignment
issues as task matching [t (2 [ 112 o task
scheduling P Dye to the continual
movement between task locations in SC, each
worker must develop an ideal way for
accomplishing all of their assigned tasks,
accounting for the predefined constraints.
Thus, the task assignment problem requires
concentration on the task-scheduling problem.
In the real-world, SC applications need to
concurrently optimize potentially conflicting
multi-objectives to exploit the utility of SC.
Therefore, multi-objective optimization must
be considered in SC. Our study investigates the
following fundamental questions:

-Q1l: How to schedule the
optimally in SC?

tasks

-Q2: How can we optimize three
conflicting objectives that include maximizing
the number of completed task, minimizing the
total travel cost and ensuring the workload
balancing between workers?

In this study, a multi-objectives task
scheduling optimization (MOTSO) problem in
SC was formulated based on the preceding
three conflicting objectives. In previous
studies, the meta-heuristic algorithms was used
to resolve task-scheduling problems, such as
the particle swarm optimization (PSO)
[SLSIA7 - the  Genetic  algorithm  (GA)
(181190201 and  Ant Colony Optimization
(ACO) 2122123 psO s a meta-heuristic
based optimization algorithm discovered by R.
Eberhart ). and it is inspired by animal social
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behavior. This study proposed a multi-
objective  particle  swarm  optimization
(MOPSO) algorithm based on the authors’
special function to solve the proposed problem.
This paper aims to maximize the number of
completed task, minimize total travel costs, and
ensure balance between worker workloads.
PSO was used to develop this work because of
its many advantages, which are summarized as
follows: it is a simple concept, is easy to
implement, completes fast computations,
produces a quick convergence to an optimal
solution, and has durable control parameters.
Further, the PSO can be used in various
applications to obtain the optimal solution. The
main  contributions of this paper are
summarized as follows:

e The MOTSO problem that aims to
maximize the number of completed tasks,
minimize the total travel cost, and ensure the
workload is balanced between workers was
formulated.

e To the best of the authors’ knowledge,
there are no studies that deal with the MOTSO
problem based on the three outlined objectives
in relation to SC. This is the first study to solve
a MOTSO problem that involves three
conflicting objectives in a SC environment.

eTo solve this MOTSO problem, the
authors adapted a MOPSO based on the novel
fitness function that will be explained in the
methods section of this paper.

e The experiments were conducted to
evaluate the performance of the proposed
solution using both real and synthetic datasets.

This paper is organized as follows:
Section Il discusses the related works
regarding task assignment in SC. This study’s
proposed methodology is explained in section
III. Section IV presents the proposed model’s
performance evaluation. and section V
concludes this article.

2. Related Work

Recently, the SC field, including
platforms such as Gigwalk and TaskRabbit, has
attracted significant attention from both
research and industry communities. In this
section, we will review the works of the many
researchers who have studied task assignment
problems in SC. We will discuss how some
have formulated the task assignment problem
as a task matching problem, as in [1], [3], [11],
[12], [24] and [25] or a task scheduling
problem, as in [9], [13] and [14] to achieve
different objectives. Despite the attention paid
to this field, studies highlighting the multi-
objective optimization (MOO) problem in SC
have been limited. In this section, we will
present the related works based on the three
following aspects.

A. Task Matching Technique

A task matching technique has been used
in several studies to achieve different
objectives. For instance, Kazemi et al. ™
presented a framework in the Server Assigned
Task (SAT) model in SC with the assumption
that the worker is reliable. The main objective
in [1] was maximizing task assignment
(MTA), which was formulated as a matching
problem and then solved by reducing the
maximum flow problem. The reliability of the
worker was subsequently integrated into the
framework developed in [1] by Kazemi et al.
(12 In [12], the authors tried to maximize the
number of assigned tasks, the achievement of
which required many reliable workers. the
study in [24] also extended the model of X by
considering the expert scores of the workers.
The framework developed in [24] aimed to
maximize the score assignment task (MSA) by
proposing three heuristic algorithms based on
maximum  weighted bipartite  matching
(MWBM). Real-time task assignment is
considered in SC, as mentioned in [3],[11]
[25]. While the real-time framework
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introduced in [25] to solve a Hyper-local
Spatial Crowdsourcing problem. This study
aims to maximize assigned task under budget
constraints. In fact, a Hyper-local Spatial
Crowdsourcing is not the focus of our study.
Where the Hyper-local approach discussed in
[25] does not require workers to travel in order
to complete spatial tasks that may not fit with
most of SC applications like home delivery
services and Uber applications. A trichromatic
online matching problem involving three sides
or objects (i.e., a task, worker, and workplace)
was introduced and reduced to 3-D matching in
[11]. However, due to the nature of continual
movement between locations in SC, each
worker must have an ideal way to accomplish
all of the tasks that are assigned to him under
predefined constraints. Therefore, solving the
task assignment problem  requires the
consideration of the task scheduling problem.
Thus, in this study, we concentrate on the task
scheduling problem based on MOO.

B. Task Scheduling Technique

Some researchers consider the task
scheduling problem in SC based on several
objectives, for instance, Deng et al. *4 were
the first to formulate the task scheduling
problem in SC within a WSTs model. They
solved the maximum task scheduling problem
by maximizing the number of completed tasks
while considering the task deadline and travel
costs between the task and the worker. Dealing
with the SATs, ™! combined task scheduling
and matching to solve the maximum task
scheduling problem by improving the number
of completed tasks and travel costs under the
expiration time. Sun et al. ® proposed load-
balancing-based spatial task scheduling
(LBSTS) to minimize the waiting time for
users by avoiding workers' overload. All of
these previous researches optimized only one
primary objective without considering the
MOO problem. A real-time application would

need to optimize many objectives to better
utilize SC advantages.

C. Multi-Objective Optimization (MOO) in SC

The researchers of ! proposed and
solved a MOO problem in SC requiring the
optimization of two objectives (i.e., the travel
cost and task reliability) by reducing it to a
minimum-cost MWBM problem. Only a few
studies have used meta-heuristic algorithms to
resolve MOO problems in SC. For instance,
Tran et al. B4 improved their approach
proposed in [33] to solve a MOOQO problem
related to hyper-local SC using a genetic
algorithm. Their two-objective optimization
involved maximizing task coverage and
minimizing the highest workload across all
workers to avoid workers’ overload under
budget variants. Wang et al.”” investigated
heterogeneous spatial crowdsourcing task
allocation (HSC-TA) based on a two-objective
optimization problem involving task coverage
and incentive budget. They proposed two
algorithms to obtain the Pareto optimal
solution. None of the existing studies have
dealt with a multi-objective task scheduling
problem in SC with three conflicting
objectives, such as maximizing the number of
completed tasks, minimizing the total travel
costs, and maintaining workload balancing
among workers.

Unlike all of the previous studies
discussed, our study explores the multi-
objective  task  scheduling  optimization
(MOTSO) problem in SC and produces a novel
solution that aims to maximize the number of
completed tasks, minimize the total travel
costs, and maintain workload balancing among
workers by avoiding workers’ overload. We
adopted the multi-objective particle swarm
optimization (MOPSQ) algorithm to improve
task scheduling in SC.
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3. Methodology

This section presents a detailed
description of the research methodology
applied to achieve the primary objectives of the
research. In the following sections, we will
present the SC scenario and then explain the
steps of the proposed MOPSO.

A. Spatial Crowdsourcing Scenario

Our Spatial Crowdsourcing Scenario is
shown in Fig. 3 can be summarized as the
following:

e The requesters send (SC-Query) which
contains the task with its constraints

t; = < lt]., dt]. > to SC-server. Where

lt,- denoted to the location of the task
while d., is the time duration of a task.

e The workers send their locations [,,; to
the server.

e In this step, the server will activate our
MOPSO by providing it with the two
sets: tasks T = {t;,t,,ts3,....t,} and
workers W = {w;,wy, w3, ....wy, },
since the server, has a global picture of
each task in the tasks' set, and each
worker in the workers' set.

Then our algorithm will assign each task
to an optimal worker, depending on our
objectives. Where the assumptions of our work
are presented in the following steps:

e Workers are volunteers, a volunteer
worker who is ready to accomplish
spatial tasks without compensation.

e Each task should be assigned to only
one worker.

e We assume all the workers are reliable
since this research is considering that
all workers presented their work with
the same quality.

Requesters

SC-Server o 0 o
b ,41(1vd’[17 l" "‘ "‘
SC_Q\AETW’ 0.7 . o0
/ VIVTY
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990

I
|

Fig. 3. The Spatial Crowdsourcing Scenario of our study.

B. Multi-Objective Particle Swarm
Optimization Task-Scheduling

The Particle Swarm Optimization (PSO)
concept consists of the swarm, which is the
population of particles. The particles are
individuals that are moving in a solution space;
every particle has a position and velocity.
While gBest is the best position achieved by
all particles, the best particle’s position
achieved by the same particle is known as
pBest,. The PSO algorithm is widely used for
different optimization problems, including
MOO problems. Thus, the PSO approach used
to solve a MOOQO problem is known as MOPSO
%81 In other words, MOPSO integrates the
advantages of MOO and PSO to improve the
finding of a solution. MOPSO is appropriate
for solving our problem because we aim to
achieve optimal task scheduling based on
multiple objectives, including maximizing the
number of completed tasks, minimizing the
total travel costs, and ensuring the workload
balancing among workers. MOPSO consists of
significant steps that will be included in each
iteration, as illustrated in Fig. 4.

Specifically, the MOPSO algorithm
starts by initializing all particles in the swarm
with velocity, position, and pBest, values.
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Each velocity and position of a particle is
initialized randomly and structured as i x j, a
matrix where i is the number of tasks and j is
the number of workers. The fitness value is
computed. At each iteration, pBest, and
gBest must be updated to guide all of the
particles to the optimal solution. By comparing
the new position, posz;, of the particle with

the pBest, value, we can store the best value
for each particle. By comparing the pBest, of
each particle with the global best particle,
gBest, we can store the best position of all
particles as the global best, gBest.

Initialize swarm, posi,
velg

v

Evalute the fithess
function f

v

if pos;;; < pBest; —_—

Yes

pBest, = posg;

v

if pBest; < gBest —~—
|
Yes
No Y
gBest= pBest;
Update pos.j, vels;

Stopping criteria
satisfy?

Yes

Fig. 4. The Flowchart of PSO.

One of the reasons for the popularity and
spread of PSO is its simplicity since it depends

on only two equations to update the particle’s
position, as shown in Equations (1) and (2).
Equation (1) is as follows:

pos;; = (poszl.l. + velzl.l.) (¢))
where Pos;;; indicates the position of particle

z and velzi]. represents the particle’s velocity.
Equation (2) is as follows:
velzl.l. = (W * velzl.l.)
+ (Cl * Tl * (pBestz— poszl.].))
+ (CZ * T2
* (gBest - poszl.].)) (2)

where poszijindicates the position of particle z
and velzi]. is the velocity of particle z. pBest,

shows the personal best position of particle z,
which indicates the best value of the particle so
far. gBest is the best position for particle z
among all particles, which means the best
result achieved by the swarm so far %!, The
flying of a particle in the search space is guided
by both pBest, and gBest over all iterations
28] Whereas w is the inertia weight, C1, C2 are
the acceleration coefficients and r1, r2 are the
random numbers between 0 and 1 ®%. The
pseudo code of our task-scheduling-based
MOPSO is given in Algorithm 1.

The fitness function is a characterization
of objective optimization that evaluates a
particle’s position. The fitness value of the
swarm was calculated based on our objectives;
we formulated our objectives into three
functions to evaluate the swarm at each
iteration:

i. The number of completed tasks, |V|:
The first objective is maximizing the number of
completed tasks. We established VST, which is
a set of all completed tasks, V = { vij ... vmn},
where vij € V denotes the task, tj, which is
completed by workers, wi. W and T are sets of
all workers and tasks, respectively. Thus, (wi,
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wm) € W and (j, tn) € T. From this, |V| can
denote the number of completed tasks.

ii. Total Travel Cost (TTC): The travel
cost is a crucial element in SC because the
worker must physically travel from his location
to the location of the task to execute the spatial
task. In our MOPSO, for each particle in each
iteration of gBest, we computed the TTC using
Equation (3). We measured the travel cost
between the worker, wi, and the completed
task, vij, using the Euclidean distance:

Total Travel Cost (TTC) = Y%, (cost(w;,vyy) +
2?—_11 cost(v;j,vij+1))) »Vij €V and (w;, wy) €

W and (tj,t,) €T 3)

where cost (vij ,Vig+1) is the cost of the same
worker, w;, traveling from task v; to the next
task, Vig+1), calculated using the Euclidean
distance. Cost (W; ,Vig+1)), on the other hand, is
the cost of worker w; traveling from their
starting point to the location, vi.

1) Workload Balancing (WLB): WLB
among workers is essential in SC because it
helps to prevent overload among workers.
Establishing a balanced workload among
workers is helpful for accelerating the
completion of requested tasks. The workload
of workers in this research can be computed
using Equation (4):

WL(w;)
n-1
= cost (w;,v;; ) + Z cost(vij , vi(j+1))
j=1
n
+ Z(dij *Sy,) v €V and (tj, tn)
j=1
cT 4)

where cost (vij ,vi(j+1)) is the cost of worker
wi traveling from task vij to the next task,
vi(j+1), and cost (wi ,vi(j+1)) is the cost of
worker wi traveling from their location to the
location of the first task vij. Further, dij is the
duration spent by the same worker, wi, to
complete each task, vij, while Swi is the speed
of the worker. As suggested by ¥, we can use

standard deviation as a metric to quantify the
WLB among workers. Thus the third our
objective optimization is a minimizing standard
deviation of workload balancing between all
workers. The formula for WLB can be
calculated as Equation (5):

WLB

1

= [ 2L WLOw)) — AWLy? )

where |W]| is the total number of workers, in
W; WL (w;) is the workload of the worker, w; ;
and AWL is the average workload of gBest. In
this study, the task scheduling is based on the
optimization of three conflicting objectives. To
unify their direction, we utilized the
normalization approach based on Equation (6)
as follows:

Normalization
. X) — imin X
[ &) = i XD
where fi(X) is the value of the objective
function, f; ™"(X) is the minimum value of the
objective, and f; "™ (X) is the maximum value

of the objective.

From all of the above, we can calculate
the value of the fitness function for all of our
objectives as follows:

f =NWLB + NTTC + (1 - NV) )

where NWLB is the normalized WLB, NTTC is
the normalized TTC, and NV is the normalized
[V]. (1-NV) is a reversal of the NV, i.e, itis a
reversal of the objective of maximizing the
number of completed tasks into another form.
This minimizes the number of uncompleted
tasks to unify the direction of our objectives for
optimization. The pseudo code for the fitness
function is presented in Algorithm 2.

4. Performance Evaluation

To evaluate the proposed algorithm
experimentally, we relied on certain
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specifications, such as Intel (R) Core (TM) i9-
8950 CPU @2.90 GHz with 32 GB RAM, to
run the algorithm. The proposed algorithm was
implemented using a Java environment. We
used both synthetic and real datasets (Gowalla)
to test our proposed algorithm. Using
SCAWG, we generated a synthetic dataset
(SYN) with uniform (UNI) distributions in a
200 X 200 grid. We adopted the Gowalla
check-in dataset for simulation ¥ which has
been used in several related works, such as ),
1 831 and 1, The Gowalla does not include
task durations; thus, in our evaluation, the
2,400 tasks and workers were randomly
selected from Gowalla venues using SCAWG
with random task durations, as was done in ¥,
Our algorithm is affected by many control
parameters. Table 1 displays the settings of the
parameters used to implement our MOPSO.

Moreover, we evaluated our algorithm
by defining two different cases with the
synthetic dataset: the first case (case 1) had
600 workers and 600 independent spatial
tasks, while the second case (case 2) had a
doubled amount with 1,200 workers and 1,200
independent spatial tasks. In this work, we
assumed the same speed of 80 for all workers,
while the duration of the task was randomly
generated with a maximum value of 90. In
addition, the baseline algorithm (BLA) in our
study is based on the approach in [9] We
compared our MOPSO with the BLA to
evaluate the effectiveness of our algorithm.

Table 1. The setting of our test.

Parameters Value
Swarm size 50
MOPSO Iteration number | 80
Configuration W [0,1]
C1,C2 2.00, 2.00
rl, r2 [0,1]
Swi 80
SC Configuration Max d; 90

We ran each experiment ten times and
calculated the average value for each of our

factors. In the following section, we present
and analyze our results in terms of the number
of completed tasks, TTC, and WLB.

Algorithm 1: the pseudo code of MOPSO algorithm.

1. /I MOPSO

2. Input: worker set W, Task set T

3. Output: gBest

4. Initialization a set of swarm particles
(population) P, iteration =0

5. Foreach particle p, € P do

6 Foreach task t; € T do

7. Foreach worker w; € Wdo

8 POSz; =Random (pozmm,pozmaxl.j )
Il initialize particle position and PBest randomly

9. velzl.j = Random (vel,in, Velmax)

Il initialize particle velocity randomly
10. End Foreach
11. End Foreach
12. End Foreach
13. While the termination criterion not satisfied do
14. Foreach particle p, € P do
15. Foreachtask ¢t; € T do
16.  Foreach worker w; € Wdo
17. f= Evaluate (p) \\ equation fitness function
18. pBest, = Update_pBest(f)
19. gBest = Update_gBest(f)

20. compute velzl.j /' using equation (2)
21 compute pos;;; // using equation (1)
22. End Foreach
23.  End Foreach
24. End Foreach
25. End While
26. Return gBest
27. The End
Algorithm2: Pseudo code for the fitness function
1./l Evaluate particle
2. Input: particle p
3. Output: double f as fitness
Foreach task t; € T do
4. Foreach worker w; € W do
5. Schedule = Assign tasks j to worker i for
lowest posy;
6 End Foreach
7.  End Foreach
8.  NWLB =Normalized(WLB(Schedule))
9. NTTC = Normalized (TTC(Schedule))
10. NV = Normalized(Completed Tasks (Schedule))
11. f= NWLB + NTTC + (1- NV)
12. Returnf

1. The number of completed tasks, |V|:
The results of the first objective (i.e.,
maximizing the number of completed tasks)
are presented in Table 2. Fig. 5, 6, and 7
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illustrate the respective percentages of
completed tasks in the task set, T, calculated
using our algorithm: about 65% for case 1,
64% for case 2, and 63% for Gowalla. The
percentages of uncompleted tasks are lower,
around 35%, 36%, and 37% for case 1, case 2,
and Gowalla, respectively. By contrast, the
percentages of completed tasks calculated
using the BLA are about 79% for case 1, 82%
for case 2, and 79% for Gowalla, which are
higher than those produced by our MOPSO. It
is clear from Fig. 8 that we need to develop
our proposed algorithm further to improve task
scheduling with the goal of maximizing the
number of completed tasks. In fact,
considering location entropy will help to
maximize task completion, as mentioned in
[3]. Based on this, we will integrate task
entropy in our algorithm to increase the
number of completed tasks. Task entropy takes
into consideration the number of visitors to a
task’s location.

Table 2. The result of the Number of Completed Task.

The number of the completed task using our MOPSO

dataset WY
Casel 391
Case2 771

Gowalla 1523

casel

= completed task = uncompleted task

Fig. 5. The number of completed task in casel.

case2

m completed task = uncompleted task

Fig. 6. The number of completed task in case2.

Gowalla

= completed task = uncompleted task

Fig. 7. The number of completed task in case2.

vl

o

casel -
0 500 1000 1500 2000

N NBLA EMOPSO

Fig. 8. The number of completed by BLA and MOPSO.
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2. TTC: In this work, we aimed to
minimize the TTC. The results of the TTC
obtained from our algorithm are presented in
Table 3. Fig. 9 shows a small gap between the
performance of MOPSO and that of the BLA
in reducing the TTC. Compared with the BLA,
MOPSO reduced the TTC by around 5% for
case 1, 6% for case 2, and 7% for Gowalla.
This means that the results did not show a
significant difference. Thus, we must improve
our MOPSO to reduce the TTC.

Table 3. The workload balancing with the MOPSO.

The workload balancing with MOPSO

dataset WLB AWL

Casel 43.95842 37.595999

Case2 44.52464 37.099551

Gowalla 44.1647 36.425756
TTC

gowalla

case?

casel

[an

10000 20000 30000 40000

EMOTSO mBLA

Fig. 9. The total travel cost by MOPSO and BLA.

3. WLB: Table IV presents the results of
maintaining the WLB (i.e.,, the standard
deviation of the worker's workload) and the
average workload among workers computed
using MOPSO. To evaluate the effectiveness
of our proposed algorithm, we compared the
results obtained using our algorithm with those
obtained using the BLA. There are no
significant differences between the results of
two algorithms regarding the WLB, as shown
in Fig. 10 & 11, however, shows that there are
apparent differences between the averages of
the workload calculated using MOPSO and the

BLA. Compared with the BLA, MOPSO
improved the averages of the workload by
around 79% for case 1 and 80% for both case
2 and Gowalla.

Based on all previous initial results, we
plan to improve our algorithm by adopting a
simple ranking strategy based on task entropy
and expected travel cost to enhance the
performance of MOPSO and to achieve the
essential research objectives.

WLB

covals |
.1
e

0 10 20 30 40 50
mMOPSO mBLA

Fig. 10. The workload balancing between workers by
MOPSO and BLA.

AWL

gowalla -
case? -
casel -

0 50 100 150 200

EMOTSO mBLA

Fig. 11. The Average workload between workers by
MOPSO and BLA.

5. Conclusion

The developing crowdsourcing
environment introduced the SC framework to
complete spatial tasks, but SC optimization
contains many challenges, specifically task
assignment. To tackle this challenge, this study
proposed a MOTSO problem that sought to
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maximize the number of completed tasks,
minimize total travel costs, and ensure a

workload balance

between workers. To

achieve the optimal solution, the MOPSO
algorithm based on a particular fitness function
formulated to provide the optimal solution was
developed. The proposed MOPSO algorithm
was evaluated using real and synthetic datasets
and revealed acceptable initial outcomes. To
further investigate these findings, future work
will enhance the performance of the MOPSO
algorithm by integrating a simple ranking
strategy based on task entropy and expected
travel cost to further validate this study’s
results.
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