
JKAU: Comp. IT. Sci., Vol. 8 No. 1, pp: 59 – 69 (1440 A.H. / 2019 A.D.)

Doi: 10.4197/Comp. 8-1.6

59

Peer to Peer Cloud Providers Federation

Nourah Fahad Janbi

Dep. of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz

University, Jeddah, Saudi Arabia

Noorah.janbi@yahoo.com

Abstract. The increasing demand of the cloud services and with the emergence of many could

service providers, the need for cloud federation is inevitable. In cloud federation, many could

services providers are collaborating with each other to improve the resources usage, cost, quality

of service they provide. To form this federation a management framework is required to facilitate

the communication between these providers. This framework can be centralized or distributed,

distributed Peer to Peer cloud federation improve extensibility, scalability and fault-tolerant. On

the other hand, it is challenging in term of complexity, security and manageability of the

federation. In this paper we propose a fully distributed P2P Cloud Federation (PPCF) architecture.

PPCF provide a way to connect heterogenous cloud providers to share resources and improve the

cloud elasticity. The architecture combines different software technologies to fulfil the cloud

federation requirements.

Keywords: Cloud Computing, Cloud Service Providers, Federation, Peer-to-Peer, P2P.

1. Introduction

In cloud computing, computer resources (such

as servers, storage and software) are offered as

services on demand with pay-as-you-go

pricing through Internet. Services are provided

by Cloud Service Providers (CSP) on different

levels Software as a Service(SaaS), Platform

as a Service(PaaS) and/or Infrastructure as a

Service(IaaS) depending on the customers’

needs
[1]

.

With the popularity of cloud computing

and the increasing demand on CSPs, a new

range of limitations and issues are raised
[2]

.

Limitations such as the scalability of the

provider, interoperability of data and

degradation in quality of service(QoS) could

be overcome with connecting multiple cloud

providers
[2-3]

. In this way, the CSP can

provide a better service to its customers and

help other providers to serve their customers in

case of idle resources are available.

Cloud federation is one of

interconnected-clouds types where a group of

clouds (private or public) are connected

together to form a federation. In this

federation, CSPs work as both providers and

consumers
[4]

. That would maximize the CSPs

resource usage, cost efficiency, quality of their

services and help them to fulfil their customers

Service Level Agreement (SLA) including

unexpected or unpredicted demands.

To build and manage a cloud federation

the following functional requirements must be

considered
[5]

: (1) Members discovery,

management, authentication, and

authorization. (2) Resource discovery,

selection, allocation, access and pricing. (3)

Interoperability mechanism to connect and

60 Nourah Fahad Janbi

exchange data between heterogenous systems.

In addition to the functional requirements, the

main non-functional requirements are

reliability, flexibility, scalability and self-

organization.

The cloud federation management

architecture can be centralized or distributed

(Peer to Peer- P2P). In centralized architecture

there is a central manager/s that stores

information about the providers and their

resources. Usually this manager coordinates

resource allocation among providers and

perform accounting tasks
[6]

. Although having

a central manager reduce the security risks and

guarantee a fair resource allocation, it is like

any other centralized system suffer from single

points of failure and requires setting up a

central server
[6-7]

.

In contrast, in a fully distributed P2P

cloud federation there are no central manager

and CSPs must negotiate directly to get the

required service. P2P federations improve

extensibility, scalability and fault-tolerant of

the cloud and are easier to deploy
 [7-8]

. On the

other hand, the P2P federation add a big

challenge in term of complexity, security and

manageability of the federation. For instance,

discovering CDP member of the federation

and their resources is a complex and risky

operation as the trustworthiness of this

member cannot be guaranteed. This mainly

because there is no central registration point

that members can refer to discover and

authenticate the provider.

In addition, another issue that must be

considered in designing P2P federations is the

free riders
[8]

. As peers tend to be selfish by

trying to maximize their profit without

contributing in the federation. Therefore, there

should be a mechanism to encourage

contribution, impose fairness and isolate free

riders.

In this paper we propose a fully

distributed P2P Cloud Federation (PPCF)

architecture. PPCF provide a way to connect

heterogenous cloud providers to share

resources and improve the cloud elasticity.

The architecture combines different software

technologies to fulfil the cloud federation

requirements.

The rest of this paper is organized as

follows: Section 2 discuses related works on

could federations. Section 3 present our

proposed architecture and in Section 4 we

evaluate our design. Finally, conclusion is

presented in Section 5.

2. Related Works

Many approaches and efforts have

already been explored related to our proposed

architecture. Each of them focused on different

scenarios and have their strength and

weaknesses. In this section we summarize

some of these proposals and frameworks.

Table1 shows a summary of the reviewed

designs.

 Authors in [9] developed a cloud

interconnection agent for OpenStack clouds.

They used the peer-to-peer agreements to

support the flexibility of the distributed cloud.

The agent works on layer 2 using IPsec tunnels

to link two agents in different clouds. This is

done manually by the administrator using the

agent API. The could customers also has to

use anther API to expand to one of the

available clouds that are set by the

administrator. Although their solution

enhanced the security for the users, it did not

consider the self-organization and dynamic

that cloud federation require. Therefore, their

secure connection should be automated and

used as underlaying technique to connect

peers.

BEACON
[10]

 is open source cloud

federation framework that suite federation

architectures such as peer, hybrid, and

Peer to Peer Cloud Providers Federation 61

brokered federations. It focuses on intercloud

networking and security issues, to support the

automated deployment of applications and

services. BEACON consist of three main

components the Service Manager, the Cloud

Manager and the Network Manager
[11]

. The

Service Manager and Cloud Manager are

responsible for the instantiation of the service

and the placement of VMs into physical hosts.

While the Network Manager is responsible for

managing the federated cloud network

operation and resources allocation.

Alternatively, to [9], BEACON automated the

deployment and configuration of the security

Virtual Network Function (VNF) on Service

Function Chaining (SFC). Which are used to

enforce a global security policy that is defined

in a single service manifest
 [12]

.

In [13] they proposed the use of

blockchain infrastructure to implement a

distributed, democratic and trustworthy

governance approach in Federation-as-a-

Service (FaaS) federations for SUNFISH

platform. They focused mainly on the context

of the public sector and its legal requirements.

Blockchain provides great features related to

the integrity, distribution and control of data

that support the approach distribution and

trustworthy. Their architecture (FaaS)

federations consists of six main components

for SUNFISH are the Federated

Administration and Monitoring (FAM), the

federated identity manager (IDM), the

Registry Interface (RI), the Data Security

(DS), the Intelligent Workload Manager

(IWM), and the Federated Runtime

Monitoring (FRM)
[14]

.

FAM represents the logical entry-points

for managing the FaaS federation and

interacting with the SUNFISH platform. IDM

provide authentication services to all the

entities within a FaaS federation. IR manage

the interaction (e.g. data store or retrieval)

with the blockchain registry using crypto-

tokens based authorization. DS uses Attribute-

based Access Control (ABAC) to enforces the

access control policies. IWM is a service

broker, that optimize the workload upon

service requests. FRM component provides a

distributed infrastructure to monitor every

access control request received. Although the

use of blockchain enhances the security of the

distributed system and provide the required

democracy among providers using smart-

contracts, it has its own drawbacks such as

limited speed and computing resources. It also

may show scalability issues.

In [15] they designed Fogbow, which is

a new middleware to support large federations

of (IaaS) cloud providers. Fogbow is designed

to support federation of heterogenous clouds

which require interoperability mechanism. In

contrast to [9] work, the middleware

implemented at a higher level at each

federation member. This increases the

flexibility of the federation as the

communication between CSP is standardized

at the middleware. Fogbow consists of two

main components: The membership manager

and the allocation manager. Membership

manager keep track of active allocation

manager using a gossip-based protocol, which

keep their membership information updated by

exchanging information periodically.

This makes Fogbow fully-decentralized

system unlike BEACON which has a single

service manifest. Plugins are included in the

allocation manager architecture to provide a

communication to various IaaS technologies,

such as Identity, Compute, Storage, Network

services. In their work they implemented

interoperability plugins and behavioural

plugins to customize the business logic.

Additionally, Fogbow apply three level

authentication and authorization at the

federation layer, the local cloud layer, and

among clouds.

62 Nourah Fahad Janbi

Table 1. Summary of the reviewed works.

 Discovery
Selection and

allocation

Monitoring and

Pricing

Authorization and

Authentication
Fairness

BEACON

[10] Members are set by

admin

Location-aware

elasticity rules and

service placement

policies

Stored at different

level depending on

the used subsystems

Global security

policy using SFCs
N/A

SUNFISH

[13]

Formal agreement

SUNFISH

Federation

Agreement Contract

(SFAC)

Service consumer

choose one of the

operation tenant

offering the service

All monitoring

information stored at

blockchain-based

registry

eIDAS – crypto-

tokens -blockchain-

based registry

Trustworthy

repudiation

system (only

proposed)

Fogbow

[15]
Gossip-style

synchronization

between allocation

managers

First come first serve

(FCFS)

Asynchronous

requests

Request data is

stored at allocation

manager and updated

periodically

Three-steps

procedure

Fairness-driven

Network of

Favors (FD-NoF)

incentive

mechanism

3. P2P Cloud Federation Platform

In this paper we propose a fully

distributed P2P Cloud Federation (PPCF)

platform architecture. PPCF provide a way to

connect heterogenous cloud providers to share

resources and improve the cloud elasticity.

This section will present the PPCF architecture

and discuss its design in detail.

A. System Architecture

P2P Cloud Federation architecture uses

different software technologies to fulfil the

system requirement. It mainly uses

component-based software technology, but

web service and software agent software

technologies are also used in some areas.

PPCF consists of four main components:

Federation Web Service (FWS), Request

Handler (RH), Distribution Manager (DM),

and Native Cloud Adapter (NCA). Figure1

presents the software architecture of PPCF and

the components that should be installed for

each cloud provider participating in the cloud

federation. Next section will discuss each

component in detail.

B. Detailed Design

This section will discuss the function of

each component of the PPCF platform

architecture and the different architecture style

it follows.

1- Federation Web Service (FWS)

The Federation web service component

is a web-based service that provide an API for

peers to receive resources request over the

Internet. These requests are sent by Remote

Allocation (RA) component at the requester

cloud PPCF. When a resources request is

received, it is passed to the RH to deal with the

request. After that, the response will be

returned to the remote peer depending on the

action that the HR took. Remote requests can

have three types of responses: (1) refused by

the authentication and authorization

component, (2) the resource allocation succeed

and a connection is established between

remote user and resources, or (3) the resource

allocation failed.

2- Request Handler (RH)

Resource requests in cloud federation

can be either fulfilled locally or remotely

depending on the current status of the

requester local cloud. The Request Handler is

responsible for dealing with both local and

remote resources requests. Local requests are

sent by the cloud provider local users. While

remote requests are sent by users of remote

Peer to Peer Cloud Providers Federation 63

cloud provider in the federation through the

FWS. RH consists of three subcomponents

Authentication and Authorization (AA), Load

Balancing (LB), and Requests Monitoring

(RM). First the request will be sent to the AA

component to be authenticated and authorized.

If it succeeds, it will be passed to the LB

which is responsible for making the decision

to either allocate the requested resource locally

or remotely. Finally, after allocation, the

request will be registered at the requests DB

by the RM. Figure 2 shows how two clouds

are communicating to submit a remote request.

While Fig. 3 and Fig. 4 present the sequence

diagrams for local and remote requests

respectively.

3. Authentication and Authorization (AA)

When a user sends a request to his local

PPCF, RH will use AA to authenticate and

authorize the request for the local user using

the native cloud mechanisms. If the user is an

authenticated user and is authorized to acquire

the requested resources, the request will be

forwarded to LB. On the other hand, if the

request is a remote request coming from FWS,

the AA will first check if the cloud provider of

the remote user is authenticated and

authorized. If this is the case, the AA will map

the credentials of the remote user to a

credential that is used to access the underlying

local cloud. Finally, the native cloud

mechanisms will be invoked to check if the

request can be processed at the local cloud.

Fig. 1 Software Architecture of PPCF.

64 Nourah Fahad Janbi

Fig. 2 Remote request between two PPCFs.

Fig. 3 Sequence diagram for local requests.

Peer to Peer Cloud Providers Federation 65

Fig. 4 Sequence diagram for remote requests.

4. Load Balancing (LB)

The Load Balancing component receives

authenticated and authorized requests from

AA and decide whether to allocate resources

locally or remotely. The decision is based on

the current state of the local cloud and

different parameters on SLA of the user. LB

retrieves the current state of the cloud using

the NCA and take the decision. If LB decided

to allocate resource locally the NCA will be

used to communicate with the Private Cloud

API to create the proper VM. Then the request

will be registered at the Requests DB by RM.

If the LB decided to allocate resource remotely

the request will be sent to the DM to handle it.

Algorithm 1 describes the resources allocation

decision procedure.

Algorithm 1: Request Allocation Decision

1: requested ← Received resource request

2: available ← Get the local resource available

3: if available > requested then

4: Allocate resource locally using the Native

Cloud Adapter

5: else
6: Pass the request to the Distribution manager to

select a peer and allocate resources remotely

7: end if
8: Register requests on the DB using Request

Monitoring Component

5. Requests Monitor (RM)

The Requests Monitor is the logical

component that manage the storing and

retrieval operations on the Requests DB. It is

responsible for keeping track of all local and

remote requests.

66 Nourah Fahad Janbi

6. Distribution Manager (DM)

The Distribution Manager handles

requests that LB decided to allocate remotely.

DM has to select a peer to send the request to

and set the connection between the user and

the remote cloud. RH consists of four

subcomponents: Reputation System (RS),

Agent-based Peer Discovery (APD), Peer

Selection (PS), and Remote allocation (RA).

7. Reputation System (RS)

The Reputation System is responsible for

recording information about the past behavior

of other peers. It also gathers information from

other peers, which are then used to determine

their reputation. This strategy is used to

promote collaboration and discriminate free

riders. There are many reputation systems

proposed in the literature for P2P networks.

Here we follow the Bayesian-based reputation

system we proposed in [16] as is it uses a very

simple basic calculation to identify good peers.

This is important because the system cloud

federation is a complex system and we need to

minimize the overhead as much as possible in

an efficient way. All Reputation values are

stored with other Peers information at the

Peers DB.

8. Agent-based Peer Discovery (APD)

Agent-based Peer Discovery is

component that use mobile agent technology

to discover other cloud providers in the

federation and their available recourse and

store them in the Peer DB. Mobile agent

instances are sent to neighbor peers to collect

information about available resources they

have periodically. These data then are sent

back to the home agent and stored in Peer DB.

Fig. 5 shows the Peer discovery mobile agent

which travels from cloud provider to anther to

collect information about providers

participating in the federation.

Fig. 5. Peer discovery mobile agent.

9. Peer Selection (PS)

Peer Selection is responsible for

selecting the optimal cloud provider (peer) for

the remote request. The optimization problem

will take a decision depending on three

parameters: Available resources,

communication cost, and reputation of the

peer. Peers available resources are collected

using APD and stored on the Peer DB.

Communication cost is calculated depending

on the location, distance, and type of link

between the current peer and destination peer.

The reputation is also stored at Peer DB and

managed by RS component. Using these

parameters APS will choose the best peer to

send the remote request to. Algorithm 2

describes the peer selection decision

procedure. The selected peer information will

be passed to RA to communicate with the

chosen remote peer and actually allocate

resources.

Algorithm 2: Peer Selection

1: peerSet ← set of all known peers

2: user ← user requested resource

3: requested ← requested resource

4: cw ← communication weight

5: rw ← reputation weight

6: candidatePeers ← new empty set

7: for i=1 to peerSet.size()

8: peer← peerSet.get(i)

9: com← peer.getCommunicationCost(user)

10: rep← peer.getReputation()

11: if peer.getAvailableRecourse()> requested then

12: score ← cw * com + rw * rep

Peer to Peer Cloud Providers Federation 67

13: peer.setScore(score)

14: candidatePeers.addPeer(peer)

15: end if

16: end for
17: selectedPeer←

candidatePeers.getPeerWithHighestScore()

18: return selectedPeer

10. Remote Allocation (RA)

To actually allocate the resource

remotely, the RA component submit the

request to FWS. After the recourse is allocated

and setting up the needed infrastructural layer

at the remote cloud provider, RA will send the

request and allocation information to RM. In

this way local RM will know where their

users’ remote requests are allocated.

11. Native Cloud Adapter (NCA)

Native Cloud Adapter is required so that

PPCF can provide the interoperability

requirement. As it is expected from PPCF to

form a federation of heterogenous cloud

providers platforms. Therefore, NCA works as

a middleware between PPCF and the Private

Cloud API that facilitate the communication

between them.

4. Evaluation of PPCF Design

Cloud federation and combining

heterogenous clouds is a complex process and

with the absent of a central manager in the

peer to peer environment the process is much

complicated. Therefore, there was a need to

use different architecture styles to fulfil the

system requirements. Each architecture style

has its own significant contribution for

software development but mostly one style is

not sufficient to design the whole aspects of

system
[17]

, especially when it is a complex and

ramify like the one in our case. In our

architecture design we adopted three

technologies (software component, web

service and mobile agent) to fulfil the

reliability, flexibility, scalability and self-

organization non-functional requirements of

our system.

Dividing the complex system into

multiple cohesive components that

encapsulates a set of related functions and

provided an interface to expose its services

and hide its implementations. By decomposing

the system into a set of independent

components the complexity of the system is

reduced. In our design we have two

subsystems, Request Handler and Distribution

Manager, each of them is further consists of a

number of components. These two systems are

designed in that way to separate the local and

remote functionally. Distribution Manager is

only used when a remote allocation is

required, and it knows how to deals with

different cloud providers and choose the best

one.

Mobile Agent technology is used in peer

to peer distributed networks, as the goal is to

build a collaborative environment to facilitate

resource sharing
[18]

. Resources need to be

easily located and the discovery process

should be done asynchronously without

disturbing the system operation. Mobile agents

provide asynchronous processing where agents

are initialized once and then roam freely

through the Internet to do their tasks
[19]

. In

this way the system performance is going to

improve, and communication overhead is

going to reduce
[17]

. In addition, the self-

organization and dynamism requirements will

be met.

In order to satisfy a heterogeneous and

loose-coupled software system, web service is

used
[20]

. Furthermore, interoperability will be

achieved as any client (in our case provider)

can access other (providers) services

regardless of their platform, technology,

vendors, or language implementations
[21]

.

Web Service in our system provides an

interface that defines the data available and

how it can be accessed by submitting requests

to the federation web service.

68 Nourah Fahad Janbi

5. Conclusion

Cloud federation allows many services

providers to collaborate with each other to

improve the resources usage, cost, quality of

service they provide. Managing this federation

and coordinate the communication of different

provides is a complex task. The management

framework can be centralized or distributed,

distributed Peer to Peer cloud federation

improve extensibility, scalability, fault-tolerant

and overcome some of the centralized issues.

On the other hand, it is itself has its own issues

regarding complexity, security and

manageability of the federation. In this paper

we propose a fully distributed P2P Cloud

Federation (PPCF) architecture that facilitate

the communication of heterogenous cloud

providers to share resources and improve the

cloud elasticity. The architecture combines

different software technologies (software

component, web service and mobile agent) to

fulfil the cloud federation requirements.

References

[1] Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu,
Y., Devarakonda, A., Fong, L., Sadjadi, S.M. and
Parashar, M., 2012. Cloud federation in a layered
service model. Journal of Computer and System Sciences,
78(5):1330-1344.

[2] Assis, M.R. and Bittencourt, L.F., 2016. A survey on
cloud federation architectures: identifying functional and
non-functional properties. Journal of Network and
Computer Applications, 72:51-71

[3] Shu, J., Liang, C., Wang, B. and Xu, J., 2018, March.
Building the federation of cloud service for big data. In
Big Data Analysis (ICBDA), 2018 IEEE 3rd
International Conference on IEEE (pp. 166-169)..

[4] Liaqat, M., Chang, V., Gani, A., Ab Hamid, S.H.,
Toseef, M., Shoaib, U. and Ali, R.L., 2017. Federated
cloud resource management: Review and discussion.
Journal of Network and Computer Applications, 77: 87-
105.

[5] Lee, C.A., 2016. Cloud federation management and
beyond: Requirements, relevant standards, and gaps.
IEEE Cloud Computing, (1), pp.42-49.

[6] Xhagjika, V., Navarro, L. and Vlassov, V., 2015,
November. Enhancing real-time applications by means of
multi-tier cloud federations. In 2015 IEEE 7th
International Conference on Cloud Computing
Technology and Science (CloudCom) IEEE. (pp. 397-
404).

[7] Ranjan, R. and Buyya, R., 2010. Decentralized overlay
for federation of enterprise clouds. In Handbook of

Research on Scalable Computing Technologies (pp. 191-
217). IGI Global.

[8] Falcão, E., Brasileiro, F., Brito, A. and Vivas, J.L.,
2016. Enhancing fairness in P2P cloud federations.
Computers & Electrical Engineering, 56:884-897.

[9] Kimmerlin, M., Hasselmeyer, P., Heikkilä, S., Plauth,
M., Parol, P. and Sarolahti, P., 2017, June. Network
expansion in OpenStack cloud federations. In Networks
and Communications (EuCNC), 2017 European
Conference on IEEE (pp. 1-5)..

[10] Huedo, E., Montero, R.S., Moreno, R., Llorente, I.M.,
Levin, A. and Massonet, P., 2017. Interoperable
federated cloud networking. IEEE Internet Computing,
21(5):54-59.

[11] Montero, R.S., Massonet, P., Villari, M., Merlino, G.,
Celesti, A., Levin, A., Schour, L., Vázquez, C., Melis,
J., Spahr, S. and Whigham, D., 2016, April. BEACON:
A Cloud Network Federation Framework. In Advances in
Service-Oriented and Cloud Computing: Workshops of
ESOCC 2015, Taormina, Italy, September 15-17, 2015,
Revised Selected Papers (Vol. 567, p. 325). Springer

[12] Massonet, P., Dupont, S., Michot, A., Levin, A. and
Villari, M., 2016, October. Enforcement of global
security policies in federated cloud networks with virtual
network functions. In Network Computing and
Applications (NCA), 2016 IEEE 15th International
Symposium on IEEE (pp. 81-84)..

[13] Margheri, A., Ferdous, M.S., Yang, M. and Sassone,
V., 2017, June. A distributed infrastructure for
democratic cloud federations. In Cloud Computing
(CLOUD), 2017 IEEE 10th International Conference on
IEEE (pp. 688-691)..

[14] Schiavo, F.P., Sassone, V., Nicoletti, L. and Margheri,
A., 2016. Faas: Federation-as-a-service. arXiv preprint
arXiv:1612.03937.

[15] Brasileiro, F., Silva, G., Araújo, F., Nóbrega, M.,
Silva, I. and Rocha, G., 2016, May. Fogbow: A
middleware for the federation of iaas clouds. In Cluster,
Cloud and Grid Computing (CCGrid), 2016 16th
IEEE/ACM International Symposium on IEEE (pp. 531-
534).

[16] Janbi, N.F. and Radenkovic, M., 2017, July. An
enhanced Bayesian-based reputation system for P2P file
sharing. In Computing Conference, 2017 (pp. 1247-
1252). IEEE.

[17] Jeware, A. and Dino, N., 2013. Hybrid Software
Architecture Design Pattern Model. HiLCoE Journal of
Computer Science and Technology, p.21.

[18] Lopes, A.L. and Botelho, L.M., 2012. Efficient
algorithms for agent-based semantic resource discovery.
In Agents and Peer-to-Peer Computing (pp. 71-82).
Springer, Berlin, Heidelberg

[19] Braun, P. and Rossak, W.R., 2005. Mobile agents:
Basic concepts, mobility models, and the tracy toolkit.
Elsevier.

[20] Aboud, N.A., Cariou, E., Gouardères, E. and Aniorté,
P., 2011, July. Service-oriented Integration of
Component and Agent Models. In ICSOFT (1) (pp. 327-
336).

[21] Qian, K., Fu, X., Tao, L. and Xu, C.W., 2010. Software
architecture and design illuminated. Jones & Bartlett
Learning.

Peer to Peer Cloud Providers Federation 69

 السحابية بطريقة الند لمند ةاتحاد مقدمي الخدم
 نوره فهد عبدالعزيز جنبي

 المممكة العربية السعودية ،جدة ،جامعة الممك عبدالعزيزكمية الحاسبات وتقنية المعمومات، قسم عمم الحاسبات،
noorah.janbi@yahoo.com

الحاجة إلى الاتحاد السحابي حتمية مع وجود الطمب المتزايد عمى الخدمات . المستخمص
ومع ظيور العديد من مقدمي الخدمات. في الاتحاد السحابي، يمكن لمعديد من ،السحابية

مع بعضيم البعض لتحسين استخدام الموارد والتكمفة وجودة الخدمة مقدمي الخدمات التعاون
التي يقدمونيا. لتشكيل ىذا الاتحاد، يمزم وجود منصة إدارة لتسييل الاتصال بين ىؤلاء
المزودين. ىذه المنصة يمكن أن تكون مركزية أو موزعة. توزيع الاتحاد عمى طريقة الند لمند

ة والتحمل. ومن ناحية أخرى، فإنو من الصعب تصميم ىذا النوع تعمل عمى زيادة القابمية لمتوسع
من الاتحاد من حيث التعقيد والأمن وسيولة الإدارة. في ىذه الورقة نقترح بنية اتحاد تعمل

وسيمة لربط PPCF(. يوفر PPCFحاد سحابات موزعة بالكامل يدعى)تبطريقة الند لمند لتكوين ا
لمشاركة الموارد وتحسين مرونة السحابة. يجمع التصميم مقدمي السحابية غير المتجانسة

 .المقترح بين تقنيات البرامج المختمفة لتمبية متطمبات اتحاد السحابات
 .P2Pالحوسبة السحابية، مقذمو الخذمات السحابية، الاتحاد، النذ للنذ، : الكلمات المفتاحية

