
JKAU: Comp. IT. Sci., Vol. 8 No. 1, pp: 85 – 93 (1440 A.H. / 2019 A.D.)

Doi: 10.4197/Comp. 8-1.8

85

Security Testing Tool for NoSQL Systems

Muhammad A. Lawal and Mostaf A. Saleh

Department of Computer Science, Faculty of Computing and Information Technology, King

Abdulaziz University, Jeddah, Saudi Arabia

mlawal@stu.kau.edu.sa

Abstract. NoSQL systems are becoming more popular due to their inherent advantages and

solutions it provides to the limits of a relational database. However, despite its benefits, it comes

with security challenges. In this paper, an input validation mechanism architecture is proposed for

Mongo DB to detect and prevent NoSQL injection attacks, the mechanism employs a

Deterministic Finite Automaton (DFA) approach to detect and prevent attacks on NoSQL

systems. Furthermore, a security comparison of some NoSQL systems is provided based on recent

literature. The security features compared are authentication, authorization, data encryption and

input validation. The proposed mechanism will improve the security of Mongo DB system

because invalid inputs requests will be detected and prevented from being processed.

Keywords: NoSQL, MongoDB, Deterministic Finite Automaton, Security testing.

1. Introduction

The emergence of the big data has strained the

capacity of the relational database

management system and makes it challenging

to deal with these data because of some of its

properties. The acceptance of the social

networking and the pursuit of research

findings is the cause of the majority of the data

generated, which accounts for over 75% of the

data generated in the previous decade.

Facebook and subatomic particles-collision

experiments only generate terabytes of data on

average per day and per minutes respectively
[1]

. On the other hand, the advent of the

NoSQL systems has provided solutions to the

problems of dealing with such enormous data.

NoSQL systems in contrast to the

relational database management systems offer

a different paradigm for storing data. It

handles unstructured data such as multimedia,

emails, documents e.t.c efficiently. The

general features of NoSQL systems can be

summed up as high scalability, reliability, and

very simple data model although prior systems

lack support for security at the database level
[2]

.

Recently, newer systems have built-in

security mechanisms
[3]

. However, efforts to

develop more secure systems are still needed

especially at the application entry point, which

provides an opportunity for interaction

between the user and the database. A user

could manipulate inputs to perform injection

attack or get unauthorized access to a system.

Hence the need for strong input validation

schemes is imperative.

An input validation mechanism

architecture using deterministic finite automata

(DFA) is proposed for Mongo DB to detect

and prevent NoSQL injection attacks. In

86 Muhammad A. Lawal and Mostaf A. Saleh

addition, security comparison of some NoSQL

systems is provided based on recent literature.

The security features compared are

authentication, authorization, data encryption

and input validation. Authentication is the

process of confirming if a user is who he

claims to be, while authorization relates to

verifying if the authenticated user is permitted

to do a particular action
[4]

. Input validation

ensures that the data is in right syntax, within

length boundaries, consists only allowable

characters, or that numbers are properly signed

and in range boundaries
[5]

.

The remainder of the paper is organized

as follows: Section 2 presents the background

and types of NoSQL systems as well as the

comparison, Section 3 presents the related

work. The proposed architecture is described

in section 4 and finally, section 5 concludes

the paper.

2. Background

NoSQL stands for “Not Only SQL” and

the word was used for the first time in 1988
[6]

and was re-introduced in 2009 in an event

concerning distributed databases. The event

deliberated on the new technologies being

presented by Google (Google Big Table
[7]

)

and Amazon (Dynamo
 [8]

) to manage huge

amounts of data. Since then, attention in the

research of NoSQL technologies flourished,

and central to several publications.

NoSQL databases deliver an all-

inclusive solution for a broad range of

database concerns, with features: basically

available, soft state, eventually consistent

(BASE) instead of relational models of

atomicity, consistency, isolation, and

durability (ACID)
[9]

.NoSQL provides a faster

rate of data processing. It also provides a

moderately low-cost for enterprises to

efficiently manage big volumes of data
[10]

.

NoSQL can widely be classified into four

categories namely Key-value database,

Column-oriented database, Document-based

and Graph database.

A. Types of NoSQL Databases

NoSQL databases are classified as Key-

value database (Redis), Column-oriented

database (HBase), Document-oriented based

(Mongo DB) and Graph database (Neo4j).

This classification is based on the data model.

Below is a brief description of some selected

NoSQL database based on the data model and

some security features.

1. Redis

 Redis is an open source database. In

this type of database, key-value pairs are

employed in storing data in the hash table for

quick access. Due to its fast data processing

applicability, it is used in high load cache

access
[11]

. However, it doesn‟t to support data

encryption i.e. communication is done in plain

text, Also, access control is not employed

instead a tiny level of authentication is offered.

String escaping is not provided hence injection

attacks are difficult
[12]

 but possible under

certain conditions
[13]

.

2. Hbase

 HBase is an open source database. It

uses column oriented model adopted from

Google big table and developed with Java, it

depends on Apache Hadoop Framework
[7]

[14]

.

Both structured and unstructured data are

supported by HBase.it employs distributed

configuration and write-ahead logging which

suits it more to an environment with regular

write than reads. Authentication and

authorization are provided by SASL (Simple

Authentication and Security Layer) with

Kerberos and ACL (Access Control List)

respectively
[15]

.

3. Mongo DB

Mongo DB is also an open source. It is

document-oriented and implemented in C++.

Security Testing Tool for NoSQL Systems 87

It is designed for storing documents. Mongo

DB employs an XML or JSON
[14]

 format in

managing documents, which makes it

applicable in broad applications. It provides

authentication and authorization as well as

data encryption but susceptible to injection

attacks.

4. Neo4J

Neo4j is an open source graph-oriented

database. Data with features like a graph

(connected) such as social networking,

recommendation system are managed using

this type of database. Nodes/vertices in the

graph are shown by means of characteristics

and the connections among nodes are typed

and relationships can have their own relative

properties. Neo4j is exceedingly versatile, it

efficiently manages data with the extremely

high relationship. It provides authorization

using role-based access control (RBAC) as

well as authentication. However, it doesn‟t

support data encryption
[16][17]

.

Table 1. Presents the security

comparisons of some NoSQL systems.

Table 1. The security comparison of some open source

nosql databases.

 Security features

s/

no

D
a

ta
b
a

se

D
a

ta
 m

o
d
e
l

A
u

th
e
n

ti
c
a

ti
o

n

A
u

th
o

ri
za

ti
o

n

E
n

c
ry

p
ti

o
n

In
p

u
t

v
a
li

d
a
ti

o
n

1 Redis Key-value Yes Yes No No

2 Hbase Column-oriented Yes Yes No No

3 Mongo

DB

Document-

oriented

Yes Yes Yes No

4 Neo4j Graph-oriented Yes Yes No No

3. Related Work

In this section, related works on security

in NoSQL systems are discussed. Several

types of research have been done to solve the

security problems in cloud databases,

however, contributions precisely for NoSQL

databases are few. Below are some of the

solution to security issues in NoSQL database.

In [18], a database security-as-a-service

(DB-SECaaS) over a document-oriented

database hosted in the cloud was proposed to

ensure that access to the data is granted only to

authorized users on a need-to-know basis. The

system has a service-oriented architecture,

which allows deploying different components

for performing exact functions as distinct

services. The DB-SECaaS provides

authentication, fine-grained authorization, and

encryption of the database objects.

Authentication service is responsible of

verifying users as well as requests by

employing Strong authentication (SA),

Identity management (IDM) and Certificate

authority (CA). Fine-grained authorization

service is responsible for protecting the data

from unauthorized disclosure, it is provided

through Policy administration point (PAP),

Policy enforcement point (PEP) and Policy

decision point (PDP) and finally, encryption

service is responsible for performing the

encryption and decryption of the data stored in

the collection on the request of a privileged

user, which is provided by advanced

encryption standard (AES) along with Key

distribution. The major security features of

DB-SECaaS system achieves an effective and

afford optimal protection to document-oriented

NoSQL databases.

In [19], a Novel Security Extension for

Redis NoSQL Database was proposed to

provide security services. Redis in its simplest

form is a key-value pair based data system.

The extension provides authorization and

authentication by employing the Rijndael

method, Encryption services by using

advanced encryption standard (AES),

command restriction to set and get commands

only, network security and persistent Data

security using encryption. The system extends

the capabilities of the Redis system to

88 Muhammad A. Lawal and Mostaf A. Saleh

complete multiuser scalable and secure

database which can be used for real-time

applications.

In [20], a secureNoSQL security scheme

was proposed to secure queries over encrypted

cloud NoSQL databases. The scheme employs

a secure proxy to implement its security plan

(designed in JavaScript Object Notation

(JSON)). The security plan defines the

procedure that will be used to maintain the

security of data elements in a database and

how to decode queries that are issued from

particular user applications. It also specifies

how those rules will be applied. These rules

includes defining a collection(a group of

NoSQL documents), choosing a crypto-system

(Order Preserving Encryption (OPE) and the

Advanced Encryption Standard(AES)

modules) depending on the security policy of

applications , the description of all sensitive

data elements of database and specifies all

cryptographic modules for all the sensitive

data fields.

The SecureNoSQL achieves efficiency

in terms of query processing time and

preventing attacks.

In [21], a DIGLOSSIA tool was

proposed to precisely and efficiently detect

code injection attacks on server-side Web

applications generating SQL and NoSQL

queries. DIGLOSSIA is language independent,

it employs a novel dual parsing method to

compare the shadow string with the actual

string generated by the application and ensure

that the actual string does not contain any code

tainted by user input. It operates in three

stages, first stage creates a shadow character

map and the dual parser, and secondly it

computes a shadow value for each string that

depends on user input, finally it detects

injected code by inspecting and comparing the

actual query string and its shadow based on

two conditions: There is a one-to-one mapping

between the parse tree of the actual query and

the parse tree of the shadow query,

specifically, all code in the actual query maps

exactly to equivalent code in the shadow query

and the shadow query does not contain any

code in the original language L. The tool

accurately detects SQL and NoSQL code

injection attacks with virtually unnoticeable

performance overhead.

In [1], a Nondeterministic finite automata

(NFA) approach is proposed to detect and

prevent NoSQL injection attacks on Mongo DB.

The scheme operates in stages, in the first stage

static analysis is employed to gather queries

from the hotspot. In the second stage, the

verification module dynamically compares user

inputs during runtime with the corresponding

input models. If the input is accepted the user is

allowed to proceed else the user will be blocked

from execution. The scheme was able to detect

and prevent all attacks.

4. Security Testing Tool for Nosql Systems

The whole inputs into a NoSQL system

can be broadly classified into two namely

legitimate or illegitimate inputs. The legitimate

inputs are those inputs accepted while

illegitimate inputs are rejected because the

inputs can be a form or medium used to attack

the system. A Deterministic Finite Automaton

(DFA) approach is employed to propose an

input validation mechanism for a Mongo DB

to detect and prevent NoSQL injection

Attacks.

An automaton is an abstract self-

propelled computing device which follows a

scheduled sequence of operations

automatically. An automaton with a finite

number of states is called a Finite Automaton

(FA) or Finite State Machine (FSM)
[22]

.

Finite Automaton are categorized into

two classes:

 Deterministic Finite Automaton (DFA)

Security Testing Tool for NoSQL Systems 89

 Non-deterministic Finite Automaton

(NDFA / NFA)

A. Deterministic Finite Automaton (DFA)

 In DFA, the transition from a state to

another is determined for each input symbol.

Therefore, it is called Deterministic

Automaton. As it has a distinct symbol for the

next number of states, the machine is called

Deterministic Finite Machine or Deterministic

Finite Automaton. For every symbol, a DFA

has one possible transition. It also rejects any

alphabet that fails to end in the final state
[22]

.

B. Formal Definition of a DFA

A DFA can be represented by a 5-tuple

(Q, ∑, δ, q0, F) where:

 Q is a finite set of states.

 ∑ is a finite set of symbols called the

alphabet.

 δ is the transition function where δ: Q × ∑

→ Q

 q0 is the initial state from where any input

is processed (q0 ∈ Q).

 F is a set of final state/states of Q (F ⊆ Q).

C. Graphical Representation of a DFA

A DFA is represented by digraphs called

state diagram (Fig. 1):

The vertices represent the states.

 The arcs labeled with an input alphabet

show the transitions.

 The initial state is denoted by an empty

single incoming arc.

 The final state is indicated by double

circles.

Fig. 1. Graphical representation of DFA [22].

Let a deterministic finite automaton be:

Q = {a, b, c},

 ∑ = {0, 1},

 q0 = {a},

 F = {c}, and

Transition function δ as shown by the

Table 2 below.

 Table 2. Transition table [22].

Present

State

Next State for

Input 0

Next State for

Input 1

A a b

B c a

C b c

D. Proposed Architecture.

An automata based (DFA) approach is

used to develop a validation mechanism for a

Mongo DB to detect and prevent NoSQL

injection attack. The approach is similar to an

implementation in [1] which employs NFA.

DFA is chosen over NFA because it requires

less time in execution and has been shown to

have a performance advantage over NFA
[23]

.

As earlier stated the DFA has one possible

transition to a state for every symbol and also

rejects any alphabet that fails to end in the

final state. These two features are vital in our

proposed architecture. The transitions from

one state to another are mapped to input

requests (i.e. alphabets in the DFA will

represent our input request). A valid request

will move through the states to the final state

while the invalid request will fail to reach the

final state. Hence, it will be rejected because it

contains an invalid request which can be an

attack on the system.

Figure 2 shows the proposed architecture

of the input validation mechanism. It consists

of two stages. In the first stage, valid

prototypes of the request (expected type of

query) are collected. In the second stage,

90 Muhammad A. Lawal and Mostaf A. Saleh

which is validation stage will test every input

request from clients using the DFA approach

against the expected types to check if it

matches a valid request. A valid request will

return the value 1, therefore it is accepted

while an invalid request will return 0 hence it

will be rejected.

Fig. 2. Proposed Architecture of an Input validation tool

for a NoSQL system.

In MongoDB, find(), insert(), remove()

and update() are considered as the places from

which a call goes to the database. An attacker

or a malicious user will always try to make

these calls to database to return true or 1 by

manipulating the inputs. As an example to

show how the proposed mechanism work,

supposing a Mongo DB database is used to

store details about books such as title of the

book, authors, ISBN numbers, publishers, etc.

A user searches for a book by entering ISBN

numbers in input box and if the number is

correct, the system will display the

information of the book. An example of valid

request will be:

db.collection.find ({ISBN:isbn_number});

Injection attacks are mostly performed

through an input field or the URL.For our

example we shall use the first way i.e the input

field, let‟s assume a system is developed with

PHP and JavaScript. Passing value and query

can be done with the code below:

$unsearch= $_POST [„name‟];

$jss= “ function () {return this.ISBN ==

„$unsearch‟;}”;

$cursor= $user -> find (array („$ where => $jss));

The system accepts the value from the

input field by $_POST[„name‟] and then

forward it to javascript $jss. Then the system

begins to query the system by using the ISBN

number: return this.ISBN. At this instant, the

system commence searching the database to

match the ISBN number by executing find

(array („$where‟=> $jss)).If the argument in

find() is true then it will display the book

details.

A malicious user could inject a bit of

code to make the query always true when

searching document by document. Let‟s

assume the ISBN number is 587952, the

attacker can append the OR operator to the

ISBN: i.e 587952 ʹ ‖ ʹ1ʹ ==ʹ1. After inserting ʹ ‖

ʹ1ʹ ==ʹ1, whatever the attacker input it will

always return true.

The proposed validation mechanism will

detect the additional code because it does

expect it. The DFA expects only the query

operator and number. Below is a graphical

illustration of our DFA model (Fig. 3).

Fig.3. Sample model for MongoDB query find ({587952}).

For any input other than the expected

operator or the ISBN number, the model will

not end in the final state. Hence the request is

rejected.

Fig. 4. Simple architecture of the deployed validation tool

in Mongo DB.

Security Testing Tool for NoSQL Systems 91

Figure 4 shows a simple architecture of

the deployed validation tool in Mongo DB.

The security testing tool can be developed as a

component. It will improve the security of

NoSQL system because invalid inputs requests

will be detected and prevented from being

processed.

5. Conclusion

Improving the security of NoSQL

system is imperative due to their growing

importance. In this paper, an architecture for a

security test tool has been proposed. It utilizes

the features of a Deterministic Finite

Automaton (DFA) to detect and prevent

NoSQL injection attacks by validating input

request through comparing it with a valid

prototype of the expected request. A valid

request is allowed to be processed while an

invalid request will be rejected to protect the

system from attacks. However, the model is a

proof of concept and is limited to only the find

() operator in Mongo DB.

In addition, a comparison based on some

security features of NoSQL systems such as

authentication, authorization, data encryption

and input validation are provided based on

recent literature. The proposed architecture

will no doubt enhance the security of Mongo

DB systems.

As a future work, an implementation of

both DFA and NFA based systems will done

and evaluations will be carried out.

Acknowledgment

The authors will like to thank the faculty

of computing and information technology

(FCIT), King Abdulaziz University Jeddah,

KSA for its continuous support.

References

[1] Joseph, S. and Jevitha, K. P., “An Automata-Based

Approach for the Prevention of NoSQL Injections,” in

Security in Computing and Communications. SSCC

2015., 2015, vol. vol 536, pp. 538–546.

[2] Okman, L., Gal-Oz, Gonen, N. Y., Gudes, E. and

Abramov, J., “Security issues in NoSQL databases,” in

Proc. 10th IEEE Int. Conf. on Trust, Security and

Privacy in Computing and Communications, TrustCom

2011, 8th IEEE Int. Conf. on Embedded Software and

Systems, ICESS 2011, 6th Int. Conf. on FCST 2011,
2011, pp. 541–547.

[3] Aviv Ron, A. P. and Shulman-Peleg, Alexandra,

“Analysis and Mitigation of NoSQL Injections,” IEEE
Secur. Priv., vol. 14, no. 2, pp. 30–39, 2016.

[4] Neo4j,[Online].Available:

https://www.owasp.org/index.php/Data_Validation.

[5] OWASP,[Online]. Available: https://neo4j.com/docs/

operations-manual/current/security/authentication-
authorization/introduction/.

[6] Lith, M. J. A, “Investigating storage solutions for large

data: A comparison of well performing and scalable

data storage solutions for real time extraction and batch

insertion of data.,” Chalmers University of Technology,
2013.

[7] Chang, G. R. F., Dean, J., Ghemawat, S., Hsieh,

W.C., Wallach, D.A., Burrows, M., Chandra, T. and

Fikes A, “Bigtable: A distributed storage system for

structured data.,” ACM Trans Comput Syst, vol. 26, no.

2, 2008.

[8] DeCandia, V. W. G., Hastorun, D., Jampani, M.,

Kakulapati, G., Lakshman, A. and Pilchin, A.,

Sivasubramanian S, Vosshall P, “Dynamo: amazon‟s

highly available key-value store.,” in ACM SIGOPS

Operating Systems Review., 2007, p. pp 205–220.

[9] Cattell, R., “Scalable SQL and NoSQL data stores.,”

ACM SIGMOD Rec., vol. 39, no. 4, pp. 12–27, 2011.

[10] Du, J., Han, J. Haihong, E. and Le, G. “Survey on

NoSQL database,” in 6th International Conference On

Pervasive Computing and Applications (ICPCA), 2011,
pp. 363–366.

[11] Noiumkar, P. and Chomsiri, T., “A Comparison the

Level of Security on Top 5 Open Source NoSQL

Databases,” in 9th International Conference on

Information Technology and Applications(ICITA2014),
2014.

[12] “Redis.” [Online]. Available: https://redis.io/topics/
security.

[13] Spiegel, Patrick, “nosql injection redis.” [Online].

Available: https://medium.com/@PatrickSpiegel/https-
medium-com-patrickspiegel-25b332d09e58.

[14] P. A. Kuznetsov S., “Nosql data management systems,”
Progr. Comput Softw, vol. 40, no. 6, pp. 323–332, 2014.

 [15] HCC, “Hbase security model.” [Online]. Available:

https://community.hortonworks.com/articles/72980/hbas
e-security-model.html.

[16] Neo4j, [Online]. Available: http://neo4j.com.

[17] Grolinger, M. A. C. K., Higashino, W.A. and Tiwari,

A., “Data management in cloud environments: NoSQL

and NewSQL data stores,” J. Cloud Comput. Adv. Syst.
Appl., 2013.

[18] Ghazi, Y., Masood, R., Rauf, A., Shibli, M. A. and

Hassan, O., “DB-SECaaS: a cloud-based protection

92 Muhammad A. Lawal and Mostaf A. Saleh

system for document-oriented NoSQL databases,”
EURASIP J. Inf. Secur., vol. 2016, no. 1, p. 16, 2016.

[19] Zaki, A. K. and Indiramma, M., “A novel redis

security extension for NoSQL database using

authentication and encryption,” Proc. 2015 IEEE Int.

Conf. Electr. Comput. Commun. Technol. ICECCT
2015, 2015.

[20] Ahmadian, M., “Secure query processing in cloud

NoSQL,” in 2017 IEEE International Conference on
Consumer Electronics, ICCE 2017, 2017, pp. 90–93.

[21] Son, S., McKinley, K. and Shmatikov, V., “Diglossia:

detecting code injection attacks with precision and

efficiency,” Proc. 2013 ACM …, no. 2, pp. 1181–1191,
2013.

[22] Point, Tutorial, “Automata Theory Tutorial.” [Online].

Available:

https://www.tutorialspoint.com/automata_theory/determi
nistic_finite_automaton.htm.

[23] Tsotras, V. J., Moro, M. M. and Z. Vagena, “Twig

query processing over graph-structured XML data,” pp.
43–48, 2004.

Security Testing Tool for NoSQL Systems 93

 NoSQLداة اختبار الأمان لأنظمة أ
 مصطفى السيد صالح و محمد أمين لول

 المممكة العربية السعودية ،جدة ،كمية الحاسبات وتقنية المعمومات، جامعة الممك عبدالعزيزقسم نظم المعمومات،
mlawal@stu.kau.edu.sa

أكثر شيوعًا بسبب مزاياىا المتأصمة وحموليا التي توفرىا NoSQLأصبحت أنظمة . المستخمص
لحدود قاعدة البيانات العلائقية. ومع ذلك، عمى الرغم من فوائدىا، فإنيا تأتي مع التحديات

لمكشف Mongo DBالأمنية. في ىذه الورقة، تم اقتراح بنية لآلية التحقق من صحة الإدخال لـ
 Deterministic Finite Automaton) خدم الآلية منيجيةومنعيا، وتست NoSQLعن ىجمات حقن

(DFA لاكتشاف ومنع اليجمات عمى أنظمةNoSQL ًا عمى ذلك، يتم توفير مقارنة الأمان . مزيد
ىي تيامقارن تاستنادًا إلى الأدبيات الحديثة. وميزات الأمان التي تم NoSQLبعض أنظمة

من صحة الإدخال. ستعمل الآلية المقترحة عمى المصادقة والترخيص وتشفير البيانات والتحقق
صحيحة ومنع معالجتيا أو لأنو سيتم اكتشاف طمبات غير Mongo DBتحسين أمان نظام

 .تنفيذىا
 .، اختبار الأمانNoSQL،Mongo DB ،DFA: الكلمات المفتاحية

