
JKAU: Comp. IT. Sci., Vol. 8 No. 2, pp: 93 – 109 (1440 A.H. / 2019 A.D.)

Doi: 10.4197/Comp. 8-2.7

93

Enhanced Host-Based Intrusion Detection Using System Call Traces

Yaqoob S. Ikram and Mohamed A. I. Madkour

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi

Arabia

 Jacob.sayid@hotmail.com

Abstract. To detect zero-day attacks in modern systems, several host-based intrusion detection

systems are proposed using the newly compiled ADFA-LD dataset. These techniques use the

system call traces of the dataset to detect anomalies, but generally they suffer either from high

computational cost as in window-based techniques or low detection rate as in frequency-based

techniques. To enhance the accuracy and speed, we propose a host-based intrusion detection

system based on distinct short sequences extraction from traces of system calls with a novel

algorithm to detect anomalies. To the best of our knowledge, the obtained results of the proposed

system are superior to all up-to-date published systems in terms of computational cost and

learning time. The obtained detection rate is also much higher than almost all compared systems

and is very close to the highest result. In particular, the proposed system provides the best

combination of high detection rate and very small learning time. The developed prototype

achieved 90.48% detection rate, 22.5% false alarm rate, and a learning time of about 30 seconds.

This provides high capability to detect zero-day attacks and also makes it flexible to cope with

any environmental changes since it can learn quickly and incrementally without the need to

rebuild the whole classifier from scratch.

Keywords: Anomaly detection; zero-day attacks; system call traces; machine learning.

1. Introduction

As online services are spreading over the

Internet, the security and privacy concerns are

arising which make it risky choice for

organizations
[1]

. Generally, the Internet is a

fertile field for crackers and hackers to target

due to various combinations of attack vectors

available such as SQL injection, XSS, IP

spoofing, ARP spoofing, DNS poisoning, DOS

and DDOS. For example, DDOS attack on

Amazon caused BitBucket.org, which is hosted

in AWS, to be unavailable for few hours
[2]

.

Utilizing firewall is a good way to protect

online services from such attacks. However,

relying on a single line of defense is not

enough in cases like firewall bypass by insiders

or due to a zero-day vulnerability in firewall.

Thus, there is a need to have a second line of

defense by utilizing accurate and reliable

intrusion detection systems (IDS). Recently,

huge data breaches of large companies and

organizations including Dropbox
[3]

, Yahoo
[4]

and LinkedIn
[5]

 occurred. These showed up the

weakness of employed IDS to detect such

attacks and severity of issued attacks.

To mitigate new generation zero-day

attacks, researchers proposed several IDS and

evaluated these IDSs on newly compiled

94 Yaqoob S. Ikram and Mohamed A. I. Madkour

dataset (ADFA-LD) that is based on modern

systems. Obtained results need to be improved

in terms of accuracy and speed of learning

normal behavior. Thus, the main problems

addressed in this paper are the accuracy and

speed of IDS to learn.

The main contribution in this paper is

host based anomaly detection using distinct

short-sequences extraction. A novel algorithm

is utilized to extract only distinct short

sequences of system calls per normal trace to

create a normal profile. Then, a companion

classification algorithm is used to evaluate the

IDS. The developed prototype achieved

90.48% detection rate (DR), 22.5% false alarm

rate (FAR), and a learning time of about 30

seconds. A second technique is investigated

based on anomaly detection using frequency-

based feature extraction from traces of system

calls. A novel frequency-based technique is

used to extract highly representative features

from raw dataset and then applied semi-

supervised machine learning techniques on

these features. The developed prototype

achieved 65% detection rate and 26.6% false

alarm rate with learning time of few

milliseconds. This shows that the proposed

feature extraction using distinct short-

sequences performs better than the frequency-

based technique. The rest of the paper is

organized as follows: Section 2 gives

background and the related work is given in

Section 3. Section 4 covers the details of the

proposed solution and Section 5 validates the

obtained results. The last section presents

conclusion and future work.

2. Background

Anomaly-based IDS has been

implemented with various techniques and

methods. Each technique has its own

advantages and disadvantages. These

techniques are classified into statistical

anomaly detection, machine learning based

anomaly detection and data mining based

anomaly detection
 [6]

. In the following

subsection, we provide a background about

anomaly detection techniques used in system

call traces to derive the classification models.

A. Anomaly Detection Techniques in System

Call Traces

Two categories of techniques are there to

detect anomaly in system call traces
[7]

: short-

sequence-based and frequency-based. The

short-sequence-based technique creates a

profile of normal behavior by extracting sub

sequences from the original logged traces. A

sliding window technique is used to extract

these sub sequences. To detect abnormal

behavior, a significant deviation of test traces

from the extracted normal traces triggers the

abnormality. Pre-determined threshold decides

whether a deviation is significant or not
[8]

.

Short-sequence-based technique considers the

positional information of system call traces

which results in creating more accurate profile.

In learning process, numerous approaches are

used such as hidden Markov model (HMM)
[9-

11]
, support vector machines (SVM)

[12]
and

artificial neural network (ANN)
[13-14]

.

Generally, the learning process in short-

sequence-based technique takes long time
[12]

.

In contrast, frequency-based technique needs

shorter learning time. It transforms the normal

traces into vector depending on the frequency

of system calls in the normal trace which

makes it very efficient in terms of

computation. A significant drawback of this

technique is the low accuracy of detection

since it ignores the positional information in

the collected traces. Detection models can be

derived from the transformed traces through

various methods including k-nearest neighbor

(kNN)
[15-16]

, k-means clustering
[17]

 and SVM
[18]

articles should present attractive studies,

new advances, and knowledge about a topic of

significance. Original Research Article must

be supported by the results.

Enhanced Host-Based Intrusion Detection Using System Call Traces 95

B. Datasets for HIDS Evaluation

In the literature, authors used to design

their proposed IDS systems using publicly

available benchmark datasets. The use of

datasets comes handy because it creates a

unified and unbiased baseline for evaluation.

Moreover, it saves time for authors to prepare a

real-time environment to test and evaluate their

IDS. In this subsection, both old and up to date

datasets are overviewed.

1. KDD Datasets

Over the past decade, authors had

evaluated their IDS using old KDD dataset

which was prepared in 1998-2000
[19]

. KDD

was relevant at the first time of compilation.

Over time, it was outdated and no longer

proper to be used for validating IDS on modern

systems. Researchers used KDD although of its

irrelevance because alternatives were not

available. The KDD dataset included wide

range of data collected under Solaris-based

system environment. Among the collected data,

system call sequences were available by

extracting them from BSM audit data. Forrest
[20]

introduced the use of these system call

traces for detecting intrusions. Later, several

improvements are proposed
[21, 8, 22, 7]

. In

addition to aging, the computer technology is

highly dynamic and changes rapidly. This

resulted in KDD dataset to be irrelevant

quickly and impractical
[23-24]

. Moreover,

generalization of results obtained from Solaris-

based system is not logical since Solaris-based

system has limited usage in cyber community

compared to Linux
[25-26]

. The most critical

point in KDD collection is the existence of

several data artifacts within it which make it

not reliable
 [27]

.

2. ADFA Dataset

Given all critiques in KDD datasets,

researchers decided to prepare newer datasets

that overcome some or all of the issues existed

in the old datasets. One attempt was UNM

dataset compiled in 2004
[28]

. The dataset was,

however, focused on processes of only

selected programs instead of the whole system
[29]

. This means the normal profile is going to

model the behavior of these programs only.

Moreover, UNM dataset is compiled in UNIX

based operating system that has fewer

deployments in cyber community compared to

Linux operating system. Recently, a modern

intrusion detection dataset (ADFA) is

compiled and made available for developing

and evaluating IDS systems
 [29]

. The ADFA

dataset is based on modern kernels such as

Linux Kernel 2.6.38. For example, Ubuntu is a

popular operating system that is based on

Linux Kernel and it has the highest

deployments on one of the most popular cloud

platforms called OpenStack
[30]

. Consequently,

the ADFA datasets can be generalized for

testing and evaluating HIDS for modern

systems. It's important to note that ADFA

datasets target HIDS which comes handy when

firewalls are bypassed by attackers. For HIDS

system to be improved, evaluated precisely

and deployed in modern systems, it needs an

accurate baseline of normal behavior in

modern systems. Once the HIDS learns this

normal profile, it compares the future system

behavior against it to detect intrusions. ADFA

datasets target two popular host operating

systems, namely Windows and Linux. This

research will shed light on the Linux dataset

ADFA-LD. The dataset was prepared in

Ubuntu Linux environment of version 11.04,

and this environment was fully patched in the

time of dataset compilation. Web services are

enabled in the host by installing Apache 2.2.17
[31]

 along with PHP 5.3.5
[32]

. To allow data

storage and dynamic content, MySQL 14.14
[33]

was installed. FTP and SSH services were

started also by their default ports to access the

host remotely. In addition, a web application

called Tiki Wiki 8.1
[34]

 was installed and

prepared to serve the online users. This version

of the web application is chosen intentionally

96 Yaqoob S. Ikram and Mohamed A. I. Madkour

as it has a critical exploit that allows for

remote code execution by injecting PHP code
[35]

. This whole setup is considered a realistic

Linux server that has all these services enabled

with some vulnerabilities existed. Several

types of attacks are selected carefully and

issued against the Linux kernel in order to

represent real attempts to hack a well-

protected system. ADFA-LD included

password brute-force attacks and payload-

based attacks. The brute-force attacks are

issued to guess FTP or SSH users and

passwords. Payload-based attacks are issued to

execute arbitrary code on the server remotely.

The remote code execution is expressed by

different attack types in ADFA-LD due to the

highly different methods used to achieve each

one. This means the attack patterns are going

to be different also. Note that FTP and SSH

credentials stealing attempts are highly valid

for the attacker as these services are used to be

accessible from remote machines for

administration purposes. Table 1 summarizes

the attacks included in ADFA-LD and their

vectors. Note that for payload upload and

management, an open source hacking tool

called Metasploit
[36]

 is used.

Traces of system call are considered a

very accurate data source for anomaly based

intrusion detection system
[29]

. Therefore, it's

selected to prepare the ADFA-LD datasets.

ADFA-LD consists of three groups. These

groups are validation, training and attack.

Validation and training groups contain normal

system call traces. i.e., traces that had been

collected using audit program while the system

was being used for normal operations such as

document writing with Latex and web

browsing. Attack group contains traces that

had been collected while attacks were being

issued against the host. Note that the collected

traces in ADFA-LD training group were

configured to filter out any traces outside the

range 300 bytes to 6 kilobytes. Additionally,

validation traces in the range between 300

bytes and 10 kilobytes were filtered out. Table

2 shows each group of traces in ADFA-LD

with number of traces in that group. In

validation folder of ADFA-LD dataset, there

are 4372 traces each of which in a separate

file, followed by an extra file that does not

contain a trace. This makes the total number of

traces in validation group different than what's

depicted by Xie
[15]

. Table 3 shows detailed

distribution of attack traces. Each trace in

ADFA-LD consists of system call indices

instead of names for simplicity. The unistd.sh

file in Linux operating system can be

referenced to map the numerical indices to the

corresponding system call names.

Table 1. Summary of attacks in ADFA-LD and their

vectors.

Attack Vector

Hydra-FTP [37] FTP service

Hydra-SSH [37] SSH Service

Add-Super-User
Poisoned executable through

social engineering

Java Meterpreter

[36]
Web: crafted payload upload

Linux

Meterpreter [36]

Poisoned executable through

social engineering

C100 Web shell

[38]
Web: crafted payload upload

Table 2. ADFA-LD trace groups.

Trace group Number of trace files

Training 833

Validation 4372

Attack 746

Table 3. Distribution of attack traces to each type of attack.

Attack Name Number of trace files

Hydra FTP 162

Hydra SSH 148

Java Meterpreter 125

Meterpreter 75

Web shell 118

Add-user 91

Enhanced Host-Based Intrusion Detection Using System Call Traces 97

3. Related Work

A. HIDS Using KDD

In KDD era, attacks footprints were clear

and focused on single processes rather than

being spread on multiple processes as in

modern systems. To detect anomalies in system

call traces, several HIDS systems were

proposed based on KDD which were

considered the basis for later researches. For

example, statistical analysis of KDD audit

trails was employed
[39]

. They achieved a

detection rate (DR) of 90% with high false

alarm rate (FAR) of 40%. Yeung and Ding
[40]

used hidden Markov model (HMM) and

entropy analysis of system calls. The best

results obtained were 91.7% at DR with low

FAR of 10%. Data mining techniques brought

good results when applied on KDD. For

instance, SVM was applied on subset of KDD

and achieved 99.6% at DR with only 4.17%

FAR
[18]

. Moreover, KNN was utilized to

classify process traces achieving 96.3% DR

and 6.2% FAR
 [41]

.

B. HIDS Using ADFA-LD

Since KDD no longer represents modern

systems, applying same algorithms for feature

extraction and detecting attacks in the new

ADFA-LD resulted in a lower performance.

Thus, novel approaches are proposed by

authors that can detect new generation attacks.

One of the breakthroughs in the field of

detecting modern zero-day attacks is the

semantic approach in feature extraction

proposed by Creech and Hu. However, this

approach suffers from a very large learning

time of few weeks to create a huge dictionary

of normal profile from normal traces
[12, 42]

.

Creech and Hu selected SVM and extreme

learning machine (ELM) as predictors that

accept the transformed dataset as input for

learning. When applied on ADFA-LD, 90%

DR is achieved and 12.5% FAR using extreme

learning machine (ELM) as predictor. With

one-class SVM, the semantic approach for

feature extraction achieved a performance of

80% DR and 17.5% FAR. To avoid the long

learning time of the semantic approach in

feature extraction, Xie et al.
[15, 17]

 proposed

frequency-based technique as an alternative to

short-sequence-based for feature extraction by

converting traces into multi-dimensional

frequency vectors of equal size. Using KNN

classification, only 60% DR was achieved at

30% FAR whereas KMC classification

achieved a little bit higher DR and lower FAR

in comparison. Moreover, Xie et al.
 [43]

proposed another novel technique for HIDS

development which utilizes short-sequence-

based technique efficiently to extract features

and SVM for classification. They achieved

70% DR with 25% FAR. The main drawback

in the proposed methods that utilize frequency-

based techniques is the inability to extract

accurate features that can bring clear

differences between attack traces and normal

traces. A novel approach similar to frequency-

based technique is proposed by Haider et al.
[44]

in which statistical features are extracted from

system call traces to form normal profile. The

results obtained were promising by achieving

78% DR and 21% FAR using KNN for

classification. However, the main drawback in

the approach is that the proposed statistical

feature extraction algorithm has randomization

steps which result in different outputs each

time extraction is done on the same input of

data. This leads to creating an instable profile

that leads to random detection rates which is

not reliable.

4. Design and Implementation

The present paper considers the new

benchmark ADFA-LD dataset for developing

an anomaly-based HIDS using frequency-

based and short-sequence-based techniques.

ADFA-LD dataset is compiled in Linux

operating system environment. Like any

typical operating systems, Linux OS has

98 Yaqoob S. Ikram and Mohamed A. I. Madkour

running processes during operation time. These

processes utilize various resources of computer

through system calls. ADFA-LD contains

system call traces which are sequences of

system calls called by various processes during

their execution time. A system call in ADFA-

LD trace is represented as a number instead of

the name for simplicity. Each number refers to

a unique system call in Linux kernel 2.6.38.

Figure 1 represents portion of a trace (UTD-

0002) from training set in ADFA-LD. To learn

the normal behavior, the HIDS proposed in this

paper must be trained and evaluated at first

using a set of normal traces. Next it should be

ready to decide whether a new trace is normal

or abnormal. Direct matching of traces

obviously does not work well. Therefore, two

categories of techniques are used for feature

extraction as in the literature; short-sequence-

based and frequency-based. To have an

accurate HIDS, the extracted features should

contain enough information that can be useful

for differentiating normal traces from abnormal

ones. Moreover, the detection technique should

be precise enough to detect abnormalities.

Along with HIDS accuracy, the time of

learning normal profile, evaluation speed and

resource consumption are all important

characteristics of a good HIDS. All these

characteristics will be taken into consideration

for the proposed enhanced HIDS.

Fig. 1. A trace representation in ADFA-LD

A. Overall Design

Figure 2 shows how the proposed HIDS

works. Basically, any HIDS consists of three

main components; the data source, which is

ADFA-LD dataset in this context, the feature

extraction component and the classification

algorithm. The data source in the proposed

HIDS consists of both training and testing data.

In the training phase, the classification

algorithm takes as input training part of

ADFA-LD which contains normal behavior.

The output of this phase is a detection model.

This model takes the testing part of ADFA-LD

as input which consists of both normal and

abnormal behavior. Based on the detection

model, evaluation phase decides whether the

input data, which is a system call trace, is

abnormal or not. If abnormal an alarm will be

raised. Note that in the proposed HIDS design,

system call traces are first transformed before

going as input to classification algorithm using

feature extraction component. Feature

extraction is very crucial component for HIDS

that is based on system call traces. It extracts

informative and representative features from

the raw data. If the extracted features are

irrelevant, then the classification algorithms

would not give good results. In this paper,

feature extraction techniques of two categories

are proposed, namely frequency-based

extraction and short-sequence-based extraction.

Fig. 2. Overall Architecture of the proposed HIDS.

B. Short-Sequence-Based Feature Extraction

In short-sequence-based technique, the

trace is divided into short sequences based on a

window size. One advantage of this technique

is that it preserves the positional information of

system calls and theoretically decreases the

possibility of mimicry attacks on the IDS
[45]

.

There are several ways to take the advantage of

this technique. In this paper, a novel algorithm

that is inspired from
[20]

and
[8]

is used for

extracting sequences of system calls in a trace

and determining the abnormality of any trace.

The algorithm takes as input the trace and

54 175 120 175 175 3 … 140

Enhanced Host-Based Intrusion Detection Using System Call Traces 99

produces sets of distinct or unique sequences of

size “w” for that trace. The parameter “w”

determines number of system calls in an

extracted sequence. Applying the extraction

technique to all normal traces, a database of

normal profile is built which contains distinct

sequences for each normal trace. To understand

the extraction algorithm better, Fig. 3

elaborates on the flow of the algorithm steps.

Suppose a normal trace is recorded and it

consists of the following system calls separated

by spaces: (54 175 120 175 175 3 175 175 3).

Let the window size w=3. The extraction

output is going to be: {(54 175 120), (175 120

175), (120 175 175), (175 175 3), (175 3 175),

(3 175 175)}. Extracting the distinct short

sequences can be expressed by equation 1 as

follows:

 (1)

C. Short-Sequence-Based Classification

Algorithms

After creating a database of normal

profile using ADFA-LD training data as shown

in Algorithm 1, short sequence extraction

algorithm is again used on any test trace to

extract distinct short sequences. Now to detect

anomaly, the classification algorithm that

learned the normal profile would scan the test

trace as shown in Algorithm 2. The proposed

algorithm calculates the similarity of the test

trace to each normal trace in normal profile.

This is done by direct matching of distinct

short sequences of the test trace to short

sequences of the normal traces. In case a short

sequence in normal trace matched another in

test trace, one hit point is retrieved. To

calculate the final and overall similarity score,

we considered three different methods (A, B,

and C) that are variations of Algorithm 2 as

shown below. Practical experiments showed

that the first method provides the best results.

A. The summation of matching hits of

test trace short sequences to all short sequences

of normal traces is considered the similarity

score as seen in steps of Algorithm 3.

B. The maximum matching hits of test

trace short sequences to the short sequences of

all 833 normal traces in ADFA-LD training

data is retrieved as similarity score.

C. For each normal trace, the total

matching hits of test trace short sequences to

those in normal trace is divided by the total

number of distinct short sequences in the

normal trace. Then, the summation of previous

calculation for each normal trace is considered

the similarity score.

Fig. 3. Architecture of feature extraction component for

short-sequence-based technique.

Algorithm 1. Short-Sequence-Based Training.

Learn(algorithm,options,train_traces)

For 0 ≤ i < train_traces.length do

 short_sequences[i]= distinctEX(train_traces[i],w)

End for

detection_model= algorithm.buildModel(short_sequences,

options)

Return detection_model

Algorithm 2. Short-Sequence-Based Classification

(Abstract).

Classify(detection_model,test_trace)

test_sequences= distinctEX(test_trace,w)

Class= detection_model.classify(test_sequences)

Return Class

100 Yaqoob S. Ikram and Mohamed A. I. Madkour

Algorithm 3. Short-Sequence-Based Classification.

Classify(detection_model,test_trace)

test_sequences= distinctEX(test_trace,w)

train_sequences= detection_model.train_sequences

For 0 ≤ i < detection_model.train_traces.length do

 For 0 ≤ j < train_sequences[i].length do

 For 0 ≤ k < test_sequences.length do

 if(test_sequences[k]== train_sequences[j]

 similarity[i]++;

 End for

 End for

End for

if(sum(similarity)> detection_model.threeshold)

 Class = 'normal'

else

 class = 'abnormal'

Return Class

D. Frequency-Based Feature Extraction

As stated previously, a system call trace

consists of system calls issued by a running

process. Several kinds of features can be

extracted from such data. A simple method is

to count calls in the trace which means a trace

is expressed by just a single feature. Such

simple feature is not informative enough to

detect abnormality since the count of calls in

normal and abnormal traces is almost similar.

In general, learning and classifying in

frequency-based feature extraction are done

very fast. However, it suffers from low

accuracy to detect anomalies. To overcome this

issue, a novel feature extraction technique is

proposed to get higher detection rate and even

faster processing by using limited number of

dimensions. In this technique, distinct system

call sequences of varying length are counted.

The length of system call sequence is set from

one to five which results in a vector of five

elements as seen in Fig. 4. For example, say a

trace is expressed by the call sequence {68, 68,

10, 68, 10, 100}, there are three distinct system

call sequences of length one. These are 68, 10

and 100 without repeating 68 or 10. Extracting

these distinct sequences is done through a

sliding window of size one. Taking two as

window size, the distinct sequences for the

same trace is expressed by {(68, 68), (68,10),

(10,68), (10,100)} which equals to four distinct

sequences. The feature vector in the suggested

extraction technique consists of five elements

resulted by changing window size from one to

five. Max window size is five and it is chosen

empirically because ineffective results were

observed after exceeding this limit.

Consequently, any trace is transformed into

feature vector of five elements. To better

understand how the frequency-based feature

extraction process is done, following

definitions are considered. Let:

1. U is set of all distinct system calls in

Linux kernel 2.6.38 which is almost 369

system calls based on the unistd.h file from

Linux which contains system call numbers.

2. S denotes a system call, S ∈ U.

3. V is set of all system call traces in

ADFA-LD.

4. T is trace of system calls T ∈ V.

Particularly:

T = {Si: i= 1, 2, …, |T|}; where |T| is the

number of system calls in the trace.

5. C is any subsequence in a trace T; C ∈ T.

6. From any trace Ti the extracted

feature vector is Fi: {Fi (w), w=1, …, 5}

7. Distinct (T, w): a function that counts

subsequences of size w without repeating.

Based on the previous definitions,

equation (2) shows how the five elements are

constructed. Combining them, a trace is

transformed into fixed size feature vector. The

feature vector is used by the classification

algorithm to learn a normal profile. Also, any

test trace is converted into feature vector before

going to detection model to detect if an

abnormality exists.

 (2)

Enhanced Host-Based Intrusion Detection Using System Call Traces 101

Fig. 4. Architecture of feature extraction component for

frequency-based technique.

E. Frequency-Based Classification

Algorithms

Referring to Fig. 2, the classification

algorithm would construct the normal profile

using training data available. Any test trace is

then evaluated through measuring the deviation

from normal profile. Normally, a threshold

needs to be specified to decide if the deviation

is significant or not. In the proposed HIDS, the

best threshold is specified empirically. To build

the normal profile in HIDS, several machine

learning algorithms are utilized. The proposed

frequency-based HIDS applies one-class

support vector machine (SVM)
[46]

 with various

kernel functions. Moreover, the widely used

KNN in literature
[47-49]

 is utilized which

measures distances between features using

several distance functions. K-furthest

neighbors which is inspired from
[50]

 is also

applied to construct a normal profile. There are

two steps in the used classification algorithm:

to learn normal profile selecting one or more

features reside in feature vector and then to

classify the transformed test trace as normal or

abnormal. Steps of the training and

classification are shown in Algorithm 4 and

Algorithm 5, respectively. In training

algorithm, ADFA-LD training set is used,

called here: train_traces. A mutually exclusive

set of ADFA-LD is used in classification

algorithm as a testing set; called here:

test_traces. Algorithm 5 will be called for

every trace in the test set. After extracting the

features from the training set, a machine

learning algorithm is used to build the model.

This model will be used for classification.

Several algorithms will be considered and

compared in this research, namely, SVM,

KNN, and KFN. These algorithms have

various parameters for configuration; called

here: options.

Algorithm 4 Frequency-Based Training.

Learn(algorithm,options,train_traces)

For 0 ≤ i < train_traces.length do

 short_sequences[i]= distinctEX(train_traces[i],w)

End for

detection_model= algorithm.buildModel(short_sequences,

options)

Return detection_model

Algorithm 5 Frequency-Based Classification.

Classify(detection_model,test_trace)

For 1 ≤ w ≤ 5 do

 Feature_Vector[w]= distinct(test_trace,w)

End for

Class= detection_model.classify(Feature_Vector)

Return Class

In KNN and KFN options, various

distance metrics can be used. Chosen metrics

in the experiments are Euclidean, Cosine and

Manhattan. Table 4 shows the method of

calculating each metric where xi represents the

ith element of extracted feature vector from

normal trace and yi is the ith element of

extracted feature vector from test trace. The

feature vector contains 5 features. However,

we shall consider experimentally various

features combinations to decide the feature

102 Yaqoob S. Ikram and Mohamed A. I. Madkour

combination that provides best obtainable

results. In Table 4, “n” represents the number

of considered features ranging from 1 to 5.

Table 4. Distance metrics for “n” features.

Euclidean

distance
√∑

Cosine

distance

∑

√∑

 √∑

Manhattan

distance
∑| |

5. Experiments and Results

We have conducted three experiments to

evaluate the performance of the proposed

HIDS techniques. The developed prototypes

are implemented using Java programming

language, Weka
[51]

 with Libsvm
[52]

 extension

and MySQL. Experiments are conducted using

a computer that has two CPU cores running at

2.9 GHz and twelve GB of RAM. Figure 5 to

Fig. 9 compare the obtained results with the

published results of six top HIDS systems that

were mentioned in Section 3. The comparisons

are shown in Table 5 and numbered for

convenience. The detection rate (DR), false

alarm rate (FAR) and learning time are used

for evaluation according to
[44]

. These measures

are computed as follows:

 DR is the number of correctly detected

abnormal traces divided by the total

number of abnormal traces contained in

ADFA-LD attack set.

 FAR is the average error rate obtained

from false positive rate (FPR) and false

negative rate (FNR), where:

o FPR is the total number of normal

traces detected as attack incorrectly

divided by the total number of

normal traces contained in ADFA-

LD validation set.

o FNR is the complement of DR,

namely (1 – DR).

 Learning time is the time required to

extract and learn the normal baseline by

the classification algorithm.

Figures 5 and 6 compare the obtained

results from frequency-based techniques in

terms of DR and FAR respectively with the

published results that use similar category of

techniques. While Fig. 7 and 8 compare the

obtained results from short-sequence-based

techniques in terms of DR and FAR

respectively with the published results that use

similar category of techniques. Figure 9

compares the learning time of the proposed

novel algorithm with the best published

algorithm. In the following we compare our

results shown in cases 1, 2 and 3 to the results

of the six top HIDS systems shown in Table 5.

Although Case 9 outperformed all frequency-

based methods, yet it is not compared because

it included randomization step which makes it

unreliable and would generate different profiles

each time the extraction is done on the same

training data.

A. Case 1

The results obtained in this case are the

best of our three cases and are competent to the

best seen results in the literature up to our

knowledge. In this experiment, we used a novel

short-sequence-based extraction and

classification algorithm of system call traces.

We studied three variations of this algorithm as

explained in Subsection 4.3. The variation A of

the proposed classification algorithm

performed best compared to the other two

variations. In this classification algorithm, the

summation of matching hits is taken as the

similarity score. In other words, similarity of a

test trace to the whole normal profile of the

operating system is calculated. Setting the

similarity score threshold empirically to 9000

as the least acceptable score gave a detection

Enhanced Host-Based Intrusion Detection Using System Call Traces 103

rate (DR) of 90.48%, and false alarm rate

(FAR) of 22.5%. Compared to all other results

of the six top HIDS systems shown in Table 5,

this experiment achieved best results in terms

of DR and learning time. Compared to case 4

of Table 5 which has the best achieved results

in the literature, the peak detection rates are

almost the same. However, the proposed

algorithm outperformed case 4 in terms of

learning time by taking only seconds instead of

weeks as shown in Fig. 9. Creech et al.
[42]

 who

developed the semantic approach stated that

the significant burden occurred by the long

time required to extract semantic features in

learning phase limits HIDS to quickly respond

to changes in the normal profile or baseline.

Consequently, an HIDS based on semantic

approach will be inflexible to eventual

environmental changes like installing new

services, changing the roles and adding new

user accounts. On the other hand, the proposed

novel short-sequence-based algorithm does not

suffer from any of these limitations and it can

respond to changes in the baseline in a matter

of seconds. Additionally, it can learn

incrementally without the need to rebuild the

whole baseline from scratch. However, the

quick learning time is at the expense of FAR

which is higher in the proposed algorithm in

this paper compared to semantic approach that

has lower FAR as seen in Fig. 8.

Fig. 5. Comparison of detection rates between frequency-

based techniques.

Fig. 6. Comparison of false alarm rates between

frequency-based techniques.

Fig. 7. Comparison of detection rates between short-based

techniques.

Fig. 8. Comparison of false alarm rates between short-

based techniques.

104 Yaqoob S. Ikram and Mohamed A. I. Madkour

Fig. 9. Comparison of learning times between short-

sequence-based techniques. Note that two weeks

are assumed for literature to represent "few

weeks".

B. Case 2

In this experiment, every trace is

transformed into a set of features using

frequency-based feature extraction technique.

We used one-class SVM as frequency-based

classification algorithm and conducted an

exhaustive search of all possible combinations

of up to five features to evaluate and select the

best combination. The best results are obtained

by using only a single feature which is the

count of unique system calls in a trace. In one-

class SVM, linear kernel function is chosen

with nu parameter set to 0.2 empirically to

control the number of support vectors. The

results achieved were 65% DR and 26.6%

FAR. Compared to cases 7 and 8 of Table 5

which used KNN and KMC respectively with

several frequency-based features, the results of

this experiment outperformed in terms of DR

and FAR as seen in Fig. 5 and 6. However,

case 6 that used SVM with hybrid extraction

technique performed better.

The most important finding of this

experiment is that the count of unique system

calls is a highly informative feature and may

give good results if used with other

combinations of extracted features in the

literature.

Table 5. Comparison of proposed HIDS with HIDS in the

Literature Review.

C
as

e

R
ef

 N
o

.

F
ea

tu
re

E

x
tr

ac
ti

o
n

C
la

ss
if

ic
at

io
n

A
lg

o
ri

th
m

D
R

F
A

R

L
ea

rn
 t
im

e

1 Proposed

Short-

Sequence-
Based

Proposed

novel
algorithm

90.48% 22.5% s

2 Proposed
Frequency-
Based

SVM

(Linear

function)

65% 26.6% ms

3 Proposed
Frequency-
Based

KFN 65% 27% ms

4 [12] [42]

Short-

Sequence-
Based

ELM 90% 12.5% week

5 [12] [42]

Short-

Sequence-

Based

SVM 80% 17.5% week

6 [43]

Frequency-

Based with

Short
Sequences

SVM 70% 25% s

7 [17] [15]
Frequency-
Based

KNN 60% 30% s

8 [17]
Frequency-

Based
KMC 60% 30% s

9 [44]
Statistical
Features

KNN 78% 21% s

C. Case 3

In this experiment, we used KNN and

KFN as frequency-based classification

algorithms. KFN performed better than KNN

by setting k=1, threshold r=47 and selecting the

efficient Manhattan distance metric. As in case

2, the best selection of feature combination

included only the count of unique system calls

in a trace. Compared to cases 7 and 8 of Table

5, which used KNN and KMC with several

frequency-based features, we obtained slightly

better DR with lower FAR and rapid learning

speed using only a single feature instead of

several features. However, the hybrid

30

1209600 1209600

0

200000

400000

600000

800000

1000000

1200000

1400000

P
ro

p
o

se
d

 N
o

ve
l A

lg
o

ri
th

m

Se
m

an
ti

c-
Fe

at
u

re
(E

LM
)

Se
m

an
ti

c-
Fe

at
u

re
(S

V
M

)

Research Literature

Le
ar

n
in

g
Ti

m
e

(s
ec

o
n

d
s)

Enhanced Host-Based Intrusion Detection Using System Call Traces 105

extraction technique in case 6 brought better

results using SVM.

We can conclude that KFN can bring

better results than KNN using frequency-based

feature extraction. This needs to be further

investigated using extraction techniques from

the literature.

6. Conclusions and Future Work

In the present work, we developed a

novel host-based IDS that can detect zero-day

attacks based on anomaly detection. The main

contribution is an anomaly detection algorithm

using distinct short-sequences extraction from

system call traces. This algorithm utilized a

novel method to extract distinct short

sequences of system calls per normal trace to

create a normal profile. Then, a companion

classification algorithm is used to evaluate the

IDS. A prototype is developed using Java and

MySQL and tested using the ADFA-LD

dataset. The best results obtained were

detection rate of 90.48% and false alarm rate of

22.5% with learning time of about 30 seconds.

To the best of our knowledge, the obtained

detection rate is much higher than almost all

compared systems and is very close to the

highest result. Moreover, the proposed system

provides the best combination of high detection

rate and very small learning time. This

provides high capability to detect zero-day

attacks and also makes it flexible to cope with

any environmental changes since it can learn

quickly and incrementally without the need to

rebuild the whole classifier from scratch.

Nevertheless, there are still some limitations in

the proposed HIDS that need to be considered

as future work. The false alarm rate needs to be

decreased by improving the extraction and the

classification algorithms. Moreover, the

abnormality threshold value has to be

determined automatically.

Acknowledgment

My thanks and appreciation to Dr.

Mohamed Ashraf Madkour for persevering

with me as my advisor throughout the time it

took me to complete this research paper. As my

advisor, Dr. Mohamed provided detailed

guidance and encouragement throughout the

course of preparing for and conducting the

research. I am grateful as well to Dr. Seyed

Mohamed Buhari for coordinating and

overseeing the administrative concerns. He

provided a lot of materials, tools and guidelines

used by the research community.

References

[1] Latif, R., Abbas, H., Assar, S. and Ali, Q. (2014) “Cloud

Computing Risk Assessment: A Systematic Literature

Review,” in: Future Information Technology, J. J. (Jong

H. Park, I. Stojmenovic, M. Choi, and F. Xhafa, Eds.

Springer Berlin Heidelberg, pp: 285-295.

[2] “Amazon EC2 attack prompts customer support changes,”

SearchAWS. [Online]. Available:

http://searchaws.techtarget.com/news/1371090/Amazon-

EC2-attack-prompts-customer-support-changes.

[Accessed: 09-May-2015].

[3] “Hackers Stole Account Details for Over 60 Million

Dropbox Users,” Motherboard. [Online]. Available:

http://motherboard.vice.com/read/hackers-stole-over-60-

million-dropbox-accounts. [Accessed: 10-Nov-2016].

[4] “Yahoo data breach affects at least 500 million users,

company says,” PCWorld, 22-Sep-2016. [Online].

Available:

http://www.pcworld.com/article/3123426/security/yahoo-

data-breach-affects-at-least-500-million-users.html.

[Accessed: 10-Nov-2016].

[5] “LinkedIn Lost 167 Million Account Credentials in Data

Breach,” Fortune, 18-May-2016. .

[6] Patcha, A. and Park, J.-M. (2007) “An overview of

anomaly detection techniques: Existing solutions and

latest technological trends,” Comput. Netw., vol. 51(12)

Aug.: 3448-3470,

[7] Forrest, S., Hofmeyr, S. and Somayaji, A. (2008) “The

Evolution of System-Call Monitoring,” in: Computer

Security Applications Conference, 2008. ACSAC 2008.

Annual, pp. 418-430.

[8] Hofmeyr, S. A., Forrest, S. and Somayaji, A. (1998)

“Intrusion Detection Using Sequences of System Calls,” J.

Comput Secur, 6 (3) Aug.: 151-180,

106 Yaqoob S. Ikram and Mohamed A. I. Madkour

[9] Eskin, E. and Stolfo, S. J. (2007) “System and methods

for intrusion detection with dynamic window sizes,”

US7162741 B2, 09-Jan-2007.

[10] Hoang, X. A. and Hu, J. (2004) “An efficient hidden

Markov model training scheme for anomaly intrusion

detection of server applications based on system calls”,

2: 470-474.

[11] Hoang, X. D., Hu, J. and Bertok, P. (2009) “A

Program-based Anomaly Intrusion Detection Scheme

Using Multiple Detection Engines and Fuzzy Inference,”

J Netw Comput Appl, 32(6) Nov.:1219–1228.

[12] Creech, G. and Hu, J. (2014) “A Semantic Approach to

Host-Based Intrusion Detection Systems Using

Contiguous and Discontiguous System Call Patterns”,

IEEE Trans. Comput., 63(4) Apr.: 807-819.

[13] Ghosh,A. K., Wanken, J. and Charron, F. (1998)

“Detecting anomalous and unknown intrusions against

programs”, in: Computer Security Applications

Conference,. Proceedings. 14th Annual, 1998, pp: 259-

267.

[14] Ghosh, A. K., Schwartzbard, A. and Schatz, M.

(1999) “Learning Program Behavior Profiles for

Intrusion Detection”, in: Proceedings of the 1st

Conference on Workshop on Intrusion Detection and

Network Monitoring - Volume 1, Berkeley, CA, USA, pp:

6-6.

[15] Xie, M. and Hu, J. (2013) “Evaluating host-based

anomaly detection systems: A preliminary analysis of

ADFA-LD,” in: 2013 6th International Congress on

Image and Signal Processing (CISP), vol. 3, pp: 1711–

1716.

[16] Liao, Y. and Vemuri, V. R. (2002) “Use of K-Nearest

Neighbor Classifier for Intrusion Detection”, Comput

Secur, 21(5) Oct.: 439-448.

[17] Xie, M., Hu, J., Yu, X. and Chang, E. (2014)

“Evaluating Host-Based Anomaly Detection Systems:

Application of the Frequency-Based Algorithms to

ADFA-LD,” in: Network and System Security, M. H.

Au, B. Carminati, and C.-C. J. Kuo, Eds. Springer

International Publishing, pp: 542–549.

[18] Chen, W.-H., Hsu, S.-H. and Shen, H.-P. (2005)

“Application of SVM and ANN for intrusion detection”,

Comput. Oper. Res., 32(10) Oct.: 2617–2634.

[19] “MIT Lincoln Laboratory: DARPA Intrusion Detection

Evaluation.” [Online]. Available:

http://www.ll.mit.edu/ideval/data/. [Accessed: 14-Sep-

2016].

[20] Forrest, S. Hofmeyr, S. A., Somayaji, A. and

Longstaff, T. A. (1996) “A Sense of Self for Unix

Processes,” in: Proceedings of the 1996 IEEE

Symposium on Security and Privacy, Washington, DC,

USA, p. 120.

[21] Forrest, S., Hofmeyr, S. A. and Somayaji, A. (1997)

“Computer Immunology,” Commun ACM, 40 (10) Oct.:

88-96.

[22] Warrender, C., Forrest, S. and Pearlmutter, B. (1999)

“Detecting intrusion using system calls: alternative data

models,” in: Proceedings of the IEEE Symposium on

Security and Privacy.

[23] Brown, C., Cowperthwaite, A., Hijazi, A. and

Somayaji, A. (2009) “Analysis of the 1999

DARPA/Lincoln Laboratory IDS Evaluation Data with

NetADHICT,” in: Proceedings of the Second IEEE

International Conference on Computational Intelligence

for Security and Defense Applications, Piscataway, NJ,

USA, pp: 67–73.

[24] Owezarski, P. (2010) “A Database of Anomalous

Traffic for Assessing Profile Based IDS,” in: Traffic

Monitoring and Analysis, F. Ricciato, M. Mellia, and E.

Biersack, Eds. Springer Berlin Heidelberg, pp: 59-72.

[25] McHugh, J. (2000) “Testing Intrusion Detection

Systems: A Critique of the 1998 and 1999 DARPA

Intrusion Detection System Evaluations As Performed

by Lincoln Laboratory”, ACM Trans Inf Syst Secur, 3(4)

Nov.: 262-294.

[26] Vaughan-Nichols, S. J. (2016) “Amazon EC2 cloud is

made up of almost half-a-million Linux servers,” ZDNet.

[Online]. Available: http://www.zdnet.com/article/

amazon-ec2-cloud-is-made-up-of-almost-half-a-million-

linux-servers/. [Accessed: 18-Sep-2016].

[27] Engen, V., Vincent, J. and Phalp, K. (2011)

“Exploring Discrepancies in Findings Obtained with the

KDD Cup ’99 Data Set”, Intell Data Anal, 15(2) Apr.:

251–276.

[28] “Computer Immune Systems - Data Sets and Software”

[Online]. Available: http://www.cs.unm.edu/~immsec/

systemcalls.htm. [Accessed: 18-Sep-2016].

[29] Creech, G. and Hu, J. (2013) “Generation of a new IDS

test dataset: Time to retire the KDD collection,” in: 2013

IEEE Wireless Communications and Networking

Conference (WCNC), pp: 4487-4492.

[30] “OpenStack | Cloud | Ubuntu.” [Online]. Available:

http://www.ubuntu.com/cloud/openstack. [Accessed: 15-

Sep-2016].

[31] “Welcome to The Apache Software Foundation!”

[Online]. Available: https://www.apache.org/.

[Accessed: 19-Sep-2016].

[32] “PHP: Hypertext Preprocessor.” [Online]. Available:

https://secure.php.net/. [Accessed: 19-Sep-2016].

[33] “MySQL.” [Online]. Available:

https://www.mysql.com/. [Accessed: 19-Sep-2016].

[34] Community, T. (2016) “Tiki Wiki CMS Groupware,”

Tiki Wiki CMS Groupware :: Community. [Online].

Enhanced Host-Based Intrusion Detection Using System Call Traces 107

Available: https://tiki.org/HomePage. [Accessed: 19-

Sep-2016].

[35] EgiX (2016) “snarf_ajax.php Remote PHP Code

Injection.” [Online]. Available: https://www.exploit-

db.com/exploits/18265/. [Accessed: 19-Sep-2016].

[36] “Penetration Testing Software, Pen Testing Security,”

Metasploit. [Online]. Available:

https://www.metasploit.com/. [Accessed: 20-Sep-2016].

[37] “THC-HYDRA - fast and flexible network login hacker.”

[Online]. Available: https://www.thc.org/thc-hydra/.

[Accessed: 20-Sep-2016].

[38] “StopTheHacker.com | Experts Explain: Hidden

Backdoors,” StopTheHacker.com. [Online]. Available:

http://www.stopthehacker.com/2012/02/07/experts-

explain-hidden-backdoors/. [Accessed: 11-Mar-2017].

[39] Ye, N., Emran, S. M., Chen, Q. and Vilbert, S. (2002)

“Multivariate Statistical Analysis of Audit Trails for

Host-Based Intrusion Detection,” IEEE Trans Comput,

51(7) Jul.: 810-820.

[40] Yeung, D.-Y. and Ding, Y. (2003) “Host-based

intrusion detection using dynamic and static behavioral

models”, Pattern Recognit., 36(1) Jan.: 229-243.

[41] Sharma, A. Pujari, A. K. and Paliwal, K. K. (2007)

“Intrusion detection using text processing techniques

with a kernel based similarity measure,” Comput. Secur.,

26 (7–8) Dec.:488–495,

[42] Creech, G. (2014) “Developing a high-accuracy cross

platform Host-Based Intrusion Detection System

capable of reliably detecting zero-day attacks”,

Awarded by: University of New South Wales

Engineering & Information Technology,.

[43] Xie, M., Hu, J. and Slay, J. (2014) “Evaluating host-

based anomaly detection systems: Application of the

one-class SVM algorithm to ADFA-LD,” in: 11th

International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), 2014, pp: 978-982.

[44] Haider, W. Hu, J. and Xie, M. (2015) “Towards

reliable data feature retrieval and decision engine in

host-based anomaly detection systems,” in: IEEE 10th

Conference on Industrial Electronics and Applications

(ICIEA), 2015, pp: 513-517.

[45] Wagner, D. and Soto, P. (2002) “Mimicry Attacks on

Host-based Intrusion Detection Systems,” in:

Proceedings of the 9th ACM Conference on Computer

and Communications Security, New York, NY, USA,

2002, pp: 255-264.

[46] Schölkopf, B. Smola, A. J. Williamson, R. C. and

Bartlett, P. L. (2000) “New Support Vector

Algorithms”, Neural Comput, 12 (5) May.: 1207-1245,

[47] Xie, M. Hu, J. Han, S. and Chen, H. H. (2013)

“Scalable Hypergrid k-NN-Based Online Anomaly

Detection in Wireless Sensor Networks,” IEEE Trans.

Parallel Distrib. Syst., 24(8) Aug.: 1661-1670.

[48] Xie, M., Hu, J. and Tian, B. (2012) “Histogram-Based

Online Anomaly Detection in Hierarchical Wireless

Sensor Networks,” in: Proceedings of the 2012 IEEE

11th International Conference on Trust, Security and

Privacy in Computing and Communications,

Washington, DC, USA, pp: 751-759.

[49] Xie, M., Han, S. and Tian, B. (2011) “Highly Efficient

Distance-Based Anomaly Detection through Univariate

with PCA in Wireless Sensor Networks,” in: 2011 IEEE

10th International Conference on Trust, Security and

Privacy in Computing and Communications, pp: 564-

571.

[50] Said, A., Fields, B., Jain, B. J. and Albayrak, S. (2013)

“User-centric Evaluation of a K-furthest Neighbor

Collaborative Filtering Recommender Algorithm,” in:

Proceedings of the 2013 Conference on Computer

Supported Cooperative Work, New York, NY, USA, pp:

1399-1408.

[51] Hall, M., Frank, E., Holmes, G., Pfahringer, B.,

Reutemann, P. and Witten, I. H. (2009) “The WEKA

Data Mining Software: An Update,” SIGKDD Explor

Newsl, 11(1) Nov.: 10-18,.

[52] Chang, C.-C. and Lin, C.-J. (2011) “LIBSVM: A

Library for Support Vector Machines,” ACM Trans

Intell Syst Technol, 2(3) May.: 27:1-27:27.

108 Yaqoob S. Ikram and Mohamed A. I. Madkour

نظام كشف التسمل المحسن بتتبع آثار استدعاءات الوظائف الأساسية في نظام
 التشغيل

 سماعيل مدكورإشرف أمحمد ويعقوب سيد إكرام سيد

 العربية السعودية، المممكة جدة الممك عبد العزيز، جامعة، المعمومات وتقنية اتكمية الحاسب
Jacob.sayid@hotmail.com

والتي تستيدف الأنظمة الحديثة، ،امعروفة مسبق اللكشف اليجمات الإلكترونية غير . المستخمص
وذلك باستخدام ،تم اقتراح عدة أنظمة مبنية عمى أساس المضيف لمكشف عن المتسممين

ىذه الأنظمة المقترحة بكشف الانحياز . تقوم التي تم تجميعيا حديثا ADFA-LDمجموعة بيانات
عن السموك الطبيعي لمنظام باستخدام تقنيات تعتمد عمى تتبع آثار استدعاءات الوظائف

والتي تم تجميعيا في مجموعة البيانات ،الأساسية في نظام التشغيل من قبل العمميات في الذاكرة
ADFA-LDيتمثل في انخفاض ،دة جوانب. بشكل عام، يوجد في الأنظمة المقترحة قصور من ع

دقة كشف المتسممين، وارتفاع نسبة الخطأ فيما تم اكتشافو، والاستيلاك العالي جدا لموارد
مع فقدان المرونة الكافية للاستجابة ،النظام، وطول مدة التعمم عمى السموك الطبيعي لمنظام

. ولمتغمب عمى جميع ىذه عمى التغيرات التي تطرأ عمى السموك الطبيعي لمنظام بشكل مستمر
م السريع لمسموك السمبيات وتحقيق أفضل مزيج من الدقة العالية، ونسبة الخطأ المنخفضة، والتعم

اقتراح نظامين لكشف المتسممين مبنية عمى أساس المضيف. النظام الأول تم الطبيعي لمنظام،
قط من استدعاءات الوظائف ينتفع من خوارزمية مستحدثة لاستخراج السلاسل القصيرة والفريدة ف

وذلك لتكوين الممحة الخاصة بالسموك الطبيعي لمنظام. بعد ذلك، ،الأساسية في نظام التشغيل
يتم استخدام خوارزمية مصاحبة لتصنيف سموك العمميات واكتشاف أي انحياز عن السموك

ردد من آثار الطبيعي. النظام الآخر يقوم باستخراج خصائص فريدة مبنية عمى التكرار والت
وذلك لتمثيل السموك الطبيعي لمنظام. بعد ،استدعاءات الوظائف الأساسية في نظام التشغيل

خاضعة للإشراف مثل الذلك، يتم استخدام تقنيات كشف الانحياز عن السموك الطبيعي وشبو
support vector machines وk-nearest neighbors وk-furthest neighborsء . قمنا بإنشا

وذلك ADFA-LDعمى مجموعة البيانات بناء ،نموذجين لممقترحين باستخدام لغة البرمجة جافا
لمقارنة أداء النظامين. النتائج التجريبية أظيرت أن النظام الأول قد تفوق عمى النظام الثاني.

من حديثامى جميع التقنيات المنشورة إلى حد عممنا، فإن ما توصمنا إليو من نتائج قد تفوق ع
 ناحية فترة التعمم عمى السموك الطبيعي لمنظام وكمية استيلاك الموارد. كما فاقت دقة الكشف في

وكانت الدقة شبو مساوية ،بالمقارنة اا جميع الأنظمة المقترحة مؤخر النظام المقترح من قبمنا تقريب

Enhanced Host-Based Intrusion Detection Using System Call Traces 109

ظام كشف التسمل من لأفضل ما تم نشره حتى وقت كتابة الورقة العممية. وبشكل خاص، فإن ن
خلال كشف الانحياز عن السموك الطبيعي لمنظام، والمبني عمى خوارزمية استخراج السلاسل
القصيرة والفريدة فقط من استدعاءات الوظائف الأساسية لنظام التشغيل قد جمع بين مزيج من

نموذج الذي تم كارتفاع دقة كشف المتسممين وانخفاض فترة التعمم. لقد حقق ال ،عدة مزايا فضمى
عمى مع فترة تعمم ٪2...ونسبة خطأ تساوي ٪84.09تطويره نسبة من الدقة العالية تساوي

من ويمكّنما مزيج من المزايا ىذا الفي ثانية فقط. إن 04 االسموك الطبيعي تساوي تقريب
واءم مرونة ليت اويجعل النظام ذ ،معروفة مسبقاالمعظم اليجمات الإلكترونية غير اكتشاف

نظرا لأنو قابل لأن يتعمم السموك الطبيعي الجديد بسرعة، ،تعديلات في البيئة ةويتماشى مع أي
 .وبشكل تكاممي من دون الحاجة إلى بناء كامل خوارزمية التصنيف من الصفر

تعمم ،اليجمات الإلكترونية الحديثة ،كشف الانحياز عن السموك الطبيعي :الكلمات المفتاحية
 .والتنبؤ، خوارزميات التصنيف، أنظمة كشف التسمل ،الآلة

110 Yaqoob S. Ikram and Mohamed A. I. Madkour

