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Abstract. To detect zero-day attacks in modern systems, several host-based intrusion detection
systems are proposed using the newly compiled ADFA-LD dataset. These techniques use the
system call traces of the dataset to detect anomalies, but generally they suffer either from high
computational cost as in window-based techniques or low detection rate as in frequency-based
techniques. To enhance the accuracy and speed, we propose a host-based intrusion detection
system based on distinct short sequences extraction from traces of system calls with a novel
algorithm to detect anomalies. To the best of our knowledge, the obtained results of the proposed
system are superior to all up-to-date published systems in terms of computational cost and
learning time. The obtained detection rate is also much higher than almost all compared systems
and is very close to the highest result. In particular, the proposed system provides the best
combination of high detection rate and very small learning time. The developed prototype
achieved 90.48% detection rate, 22.5% false alarm rate, and a learning time of about 30 seconds.
This provides high capability to detect zero-day attacks and also makes it flexible to cope with
any environmental changes since it can learn quickly and incrementally without the need to

rebuild the whole classifier from scratch.
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1. Introduction

As online services are spreading over the
Internet, the security and privacy concerns are
arising which make it risky choice for
organizations M. Generally, the Internet is a
fertile field for crackers and hackers to target
due to various combinations of attack vectors
available such as SQL injection, XSS, IP
spoofing, ARP spoofing, DNS poisoning, DOS
and DDOS. For example, DDOS attack on
Amazon caused BitBucket.org, which is hosted
in AWS, to be unavailable for few hours 2.
Utilizing firewall is a good way to protect
online services from such attacks. However,
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relying on a single line of defense is not
enough in cases like firewall bypass by insiders
or due to a zero-day vulnerability in firewall.
Thus, there is a need to have a second line of
defense by utilizing accurate and reliable
intrusion detection systems (IDS). Recently,
huge data breaches of large companies and
organizations including Dropbox &, Yahoo ¥
and LinkedIn ™! occurred. These showed up the
weakness of employed IDS to detect such
attacks and severity of issued attacks.

To mitigate new generation zero-day
attacks, researchers proposed several IDS and
evaluated these IDSs on newly compiled



94 Yaqoob S. Ikram and Mohamed A. I. Madkour

dataset (ADFA-LD) that is based on modern
systems. Obtained results need to be improved
in terms of accuracy and speed of learning
normal behavior. Thus, the main problems
addressed in this paper are the accuracy and
speed of IDS to learn.

The main contribution in this paper is
host based anomaly detection using distinct
short-sequences extraction. A novel algorithm
is utilized to extract only distinct short
sequences of system calls per normal trace to
create a normal profile. Then, a companion
classification algorithm is used to evaluate the
IDS. The developed prototype achieved
90.48% detection rate (DR), 22.5% false alarm
rate (FAR), and a learning time of about 30
seconds. A second technique is investigated
based on anomaly detection using frequency-
based feature extraction from traces of system
calls. A novel frequency-based technique is
used to extract highly representative features
from raw dataset and then applied semi-
supervised machine learning techniques on
these features. The developed prototype
achieved 65% detection rate and 26.6% false
alarm rate with learning time of few
milliseconds. This shows that the proposed
feature extraction using distinct short-
sequences performs better than the frequency-
based technique. The rest of the paper is
organized as follows: Section 2 gives
background and the related work is given in
Section 3. Section 4 covers the details of the
proposed solution and Section 5 validates the
obtained results. The last section presents
conclusion and future work.

2. Background

Anomaly-based IDS has been
implemented with various techniques and
methods. Each technique has its own
advantages and  disadvantages. = These
techniques are classified into statistical
anomaly detection, machine learning based

anomaly detection and data mining based
anomaly detection . In the following
subsection, we provide a background about
anomaly detection techniques used in system
call traces to derive the classification models.

A. Anomaly Detection Techniques in System
Call Traces

Two categories of techniques are there to
detect anomaly in system call traces [): short-
sequence-based and frequency-based. The
short-sequence-based technique creates a
profile of normal behavior by extracting sub
sequences from the original logged traces. A
sliding window technique is used to extract
these sub sequences. To detect abnormal
behavior, a significant deviation of test traces
from the extracted normal traces triggers the
abnormality. Pre-determined threshold decides
whether a deviation is significant or not [,
Short-sequence-based technique considers the
positional information of system call traces
which results in creating more accurate profile.
In learning process, numerous approaches are
used such as hidden Markov model (HMM)
YW support vector machines (SVM) 1% and
artificial neural network (ANN) 134
Generally, the learning process in short-
sequence-based technique takes long time ™2,
In contrast, frequency-based technique needs
shorter learning time. It transforms the normal
traces into vector depending on the frequency
of system calls in the normal trace which
makes it very efficient in terms of
computation. A significant drawback of this
technique is the low accuracy of detection
since it ignores the positional information in
the collected traces. Detection models can be
derived from the transformed traces through
various methods including k-nearest neighbor
§kNN) [15-18] 'k _means clustering " and SVM
18] articles should present attractive studies,
new advances, and knowledge about a topic of
significance. Original Research Article must
be supported by the results.
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B. Datasets for HIDS Evaluation

In the literature, authors used to design
their proposed IDS systems using publicly
available benchmark datasets. The use of
datasets comes handy because it creates a
unified and unbiased baseline for evaluation.
Moreover, it saves time for authors to prepare a
real-time environment to test and evaluate their
IDS. In this subsection, both old and up to date
datasets are overviewed.

1. KDD Datasets

Over the past decade, authors had
evaluated their IDS using old KDD dataset
which was prepared in 1998-2000 ™. KDD
was relevant at the first time of compilation.
Over time, it was outdated and no longer
proper to be used for validating IDS on modern
systems. Researchers used KDD although of its
irrelevance because alternatives were not
available. The KDD dataset included wide
range of data collected under Solaris-based
system environment. Among the collected data,
system call sequences were available by
extracting them from BSM audit data. Forrest
200 introduced the use of these system call
traces for detecting intrusions. Later, several
improvements are proposed 2% & 22 7 |
addition to aging, the computer technology is
highly dynamic and changes rapidly. This
resulted in KDD dataset to be irrelevant
quickly and impractical %! Moreover,
generalization of results obtained from Solaris-
based system is not logical since Solaris-based
system has limited usage in cyber community
compared to Linux %! The most critical
point in KDD collection is the existence of
several data artifacts within it which make it
not reliable .

2. ADFA Dataset

Given all critiques in KDD datasets,
researchers decided to prepare newer datasets
that overcome some or all of the issues existed
in the old datasets. One attempt was UNM

dataset compiled in 2004 18!, The dataset was,
however, focused on processes of only
selected programs instead of the whole system
(9] This means the normal profile is going to
model the behavior of these programs only.
Moreover, UNM dataset is compiled in UNIX
based operating system that has fewer
deployments in cyber community compared to
Linux operating system. Recently, a modern
intrusion  detection dataset (ADFA) is
compiled and made available for developing
and evaluating IDS systems . The ADFA
dataset is based on modern kernels such as
Linux Kernel 2.6.38. For example, Ubuntu is a
popular operating system that is based on
Linux Kernel and it has the highest
deployments on one of the most popular cloud
platforms called OpenStack . Consequently,
the ADFA datasets can be generalized for
testing and evaluating HIDS for modern
systems. It's important to note that ADFA
datasets target HIDS which comes handy when
firewalls are bypassed by attackers. For HIDS
system to be improved, evaluated precisely
and deployed in modern systems, it needs an
accurate baseline of normal behavior in
modern systems. Once the HIDS learns this
normal profile, it compares the future system
behavior against it to detect intrusions. ADFA
datasets target two popular host operating
systems, namely Windows and Linux. This
research will shed light on the Linux dataset
ADFA-LD. The dataset was prepared in
Ubuntu Linux environment of version 11.04,
and this environment was fully patched in the
time of dataset compilation. Web services are
enabled in the host by installing Apache 2.2.17
B along with PHP 5.3.5 #2. To allow data
storage and dynamic content, MySQL 14.14
331 was installed. FTP and SSH services were
started also by their default ports to access the
host remotely. In addition, a web application
called Tiki Wiki 8.1 B was installed and
prepared to serve the online users. This version
of the web application is chosen intentionally
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as it has a critical exploit that allows for
remote code execution by injecting PHP code
351 This whole setup is considered a realistic
Linux server that has all these services enabled
with some vulnerabilities existed. Several
types of attacks are selected carefully and
issued against the Linux kernel in order to
represent real attempts to hack a well-
protected system. ADFA-LD included
password brute-force attacks and payload-
based attacks. The brute-force attacks are
issued to guess FTP or SSH users and
passwords. Payload-based attacks are issued to
execute arbitrary code on the server remotely.
The remote code execution is expressed by
different attack types in ADFA-LD due to the
highly different methods used to achieve each
one. This means the attack patterns are going
to be different also. Note that FTP and SSH
credentials stealing attempts are highly valid
for the attacker as these services are used to be
accessible from remote machines for
administration purposes. Table 1 summarizes
the attacks included in ADFA-LD and their
vectors. Note that for payload upload and
management, an open source hacking tool
called Metasploit 2¢ is used.

Traces of system call are considered a
very accurate data source for anomaly based
intrusion detection system . Therefore, it's
selected to prepare the ADFA-LD datasets.
ADFA-LD consists of three groups. These
groups are validation, training and attack.
Validation and training groups contain normal
system call traces. i.e., traces that had been
collected using audit program while the system
was being used for normal operations such as
document writing with Latex and web
browsing. Attack group contains traces that
had been collected while attacks were being
issued against the host. Note that the collected
traces in ADFA-LD training group were
configured to filter out any traces outside the
range 300 bytes to 6 kilobytes. Additionally,

validation traces in the range between 300
bytes and 10 kilobytes were filtered out. Table
2 shows each group of traces in ADFA-LD
with number of traces in that group. In
validation folder of ADFA-LD dataset, there
are 4372 traces each of which in a separate
file, followed by an extra file that does not
contain a trace. This makes the total number of
traces in validation group different than what's
depicted by Xie ™. Table 3 shows detailed
distribution of attack traces. Each trace in
ADFA-LD consists of system call indices
instead of names for simplicity. The unistd.sh
file in Linux operating system can be
referenced to map the numerical indices to the
corresponding system call names.

Table 1. Summary of attacks in ADFA-LD and their

vectors.
Vector

Attack

Hydra-FTP [37]

FTP service

Hydra-SSH [37]

SSH Service

Add-Super-User

Poisoned executable
social engineering

through

Java Meterpreter
[36]

Web: crafted payload upload

Linux
Meterpreter [36]

Poisoned executable
social engineering

through

C100 Web shell
[38]

Web: crafted payload upload

Table 2. ADFA-LD trace groups.

Trace group

Number of trace files

Training 833
Validation 4372
Attack 746

Table 3. Distribution of attack traces to each type of attack.

Attack Name Number of trace files
Hydra FTP 162
Hydra SSH 148
Java Meterpreter | 125
Meterpreter 75
Web shell 118
Add-user 91




Enhanced Host-Based Intrusion Detection Using System Call Traces 97

3. Related Work
A. HIDS Using KDD

In KDD era, attacks footprints were clear
and focused on single processes rather than
being spread on multiple processes as in
modern systems. To detect anomalies in system
call traces, several HIDS systems were
proposed based on KDD which were
considered the basis for later researches. For
example, statistical analysis of KDD audit
trails was employed . They achieved a
detection rate (DR) of 90% with high false
alarm rate (FAR) of 40%. Yeung and Ding “”
used hidden Markov model (HMM) and
entropy analysis of system calls. The best
results obtained were 91.7% at DR with low
FAR of 10%. Data mining technigues brought
good results when applied on KDD. For
instance, SVM was applied on subset of KDD
and achieved 99.6% at DR with only 4.17%
FAR [ Moreover, KNN was utilized to
classify process traces achieving 96.3% DR
and 6.2% FAR 1,

B. HIDS Using ADFA-LD

Since KDD no longer represents modern
systems, applying same algorithms for feature
extraction and detecting attacks in the new
ADFA-LD resulted in a lower performance.
Thus, novel approaches are proposed by
authors that can detect new generation attacks.
One of the breakthroughs in the field of
detecting modern zero-day attacks is the
semantic approach in feature extraction
proposed by Creech and Hu. However, this
approach suffers from a very large learning
time of few weeks to create a huge dictionar
of normal profile from normal traces 2 %,
Creech and Hu selected SVM and extreme
learning machine (ELM) as predictors that
accept the transformed dataset as input for
learning. When applied on ADFA-LD, 90%
DR is achieved and 12.5% FAR using extreme
learning machine (ELM) as predictor. With

one-class SVM, the semantic approach for
feature extraction achieved a performance of
80% DR and 17.5% FAR. To avoid the long
learning time of the semantic a]?proach in
feature extraction, Xie et al. ™ "' proposed
frequency-based technique as an alternative to
short-sequence-based for feature extraction by
converting traces into multi-dimensional
frequency vectors of equal size. Using KNN
classification, only 60% DR was achieved at
30% FAR whereas KMC classification
achieved a little bit higher DR and lower FAR
in comparison. Moreover, Xie et al. "
proposed another novel technique for HIDS
development which utilizes short-sequence-
based technique efficiently to extract features
and SVM for classification. They achieved
70% DR with 25% FAR. The main drawback
in the proposed methods that utilize frequency-
based techniques is the inability to extract
accurate features that can bring clear
differences between attack traces and normal
traces. A novel approach similar to frequency-
based technique is proposed by Haider et al. [*¥
in which statistical features are extracted from
system call traces to form normal profile. The
results obtained were promising by achieving
78% DR and 21% FAR using KNN for
classification. However, the main drawback in
the approach is that the proposed statistical
feature extraction algorithm has randomization
steps which result in different outputs each
time extraction is done on the same input of
data. This leads to creating an instable profile
that leads to random detection rates which is
not reliable.

4. Design and Implementation

The present paper considers the new
benchmark ADFA-LD dataset for developing
an anomaly-based HIDS using frequency-
based and short-sequence-based techniques.
ADFA-LD dataset is compiled in Linux
operating system environment. Like any
typical operating systems, Linux OS has
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running processes during operation time. These
processes utilize various resources of computer
through system calls. ADFA-LD contains
system call traces which are sequences of
system calls called by various processes during
their execution time. A system call in ADFA-
LD trace is represented as a number instead of
the name for simplicity. Each number refers to
a unique system call in Linux kernel 2.6.38.
Figure 1 represents portion of a trace (UTD-
0002) from training set in ADFA-LD. To learn
the normal behavior, the HIDS proposed in this
paper must be trained and evaluated at first
using a set of normal traces. Next it should be
ready to decide whether a new trace is normal
or abnormal. Direct matching of traces
obviously does not work well. Therefore, two
categories of techniques are used for feature
extraction as in the literature; short-sequence-
based and frequency-based. To have an
accurate HIDS, the extracted features should
contain enough information that can be useful
for differentiating normal traces from abnormal
ones. Moreover, the detection technique should
be precise enough to detect abnormalities.
Along with HIDS accuracy, the time of
learning normal profile, evaluation speed and
resource consumption are all important
characteristics of a good HIDS. All these
characteristics will be taken into consideration
for the proposed enhanced HIDS.

WL I3 . W

Fig. 1. A trace representation in ADFA-LD
A. Overall Design

Figure 2 shows how the proposed HIDS
works. Basically, any HIDS consists of three
main components; the data source, which is
ADFA-LD dataset in this context, the feature
extraction component and the classification
algorithm. The data source in the proposed
HIDS consists of both training and testing data.
In the training phase, the classification
algorithm takes as input training part of

ADFA-LD which contains normal behavior.
The output of this phase is a detection model.
This model takes the testing part of ADFA-LD
as input which consists of both normal and
abnormal behavior. Based on the detection
model, evaluation phase decides whether the
input data, which is a system call trace, is
abnormal or not. If abnormal an alarm will be
raised. Note that in the proposed HIDS design,
system call traces are first transformed before
going as input to classification algorithm using
feature  extraction component.  Feature
extraction is very crucial component for HIDS
that is based on system call traces. It extracts
informative and representative features from
the raw data. If the extracted features are
irrelevant, then the classification algorithms
would not give good results. In this paper,
feature extraction techniques of two categories
are  proposed, namely frequency-based
extraction and short-sequence-based extraction.

A) Training Phase:

Feature Classification Detection
Extraction Algorithm Model

Training
data

B) Evaluation Phase:

Testing Feature Detection
—_ —_— —/ a /
/ Data / Extraction Model ass

Fig. 2. Overall Architecture of the proposed HIDS.

B. Short-Sequence-Based Feature Extraction

In short-sequence-based technique, the
trace is divided into short sequences based on a
window size. One advantage of this technique
is that it preserves the positional information of
system calls and theoretically decreases the
possibility of mimicry attacks on the IDS [,
There are several ways to take the advantage of
this technique. In this paper, a novel algorithm
that is inspired from % and ® is used for
extracting sequences of system calls in a trace
and determining the abnormality of any trace.
The algorithm takes as input the trace and
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produces sets of distinct or unique sequences of
size “w” for that trace. The parameter “w”
determines number of system calls in an
extracted sequence. Applying the extraction
technique to all normal traces, a database of
normal profile is built which contains distinct
sequences for each normal trace. To understand
the extraction algorithm better, Fig. 3
elaborates on the flow of the algorithm steps.
Suppose a normal trace is recorded and it
consists of the following system calls separated
by spaces: (54 175 120 175 175 3 175 175 3).
Let the window size w=3. The extraction
output is going to be: {(54 175 120), (175 120
175), (120 175 175), (175 175 3), (175 3 175),
(3 175 175)}. Extracting the distinct short
sequences can be expressed by equation 1 as
follows:

F;(w) = distinctEx(T;,w) 1)

C. Short-Sequence-Based Classification
Algorithms

After creating a database of normal
profile using ADFA-LD training data as shown
in Algorithm 1, short sequence extraction
algorithm is again used on any test trace to
extract distinct short sequences. Now to detect
anomaly, the classification algorithm that
learned the normal profile would scan the test
trace as shown in Algorithm 2. The proposed
algorithm calculates the similarity of the test
trace to each normal trace in normal profile.
This is done by direct matching of distinct
short sequences of the test trace to short
sequences of the normal traces. In case a short
sequence in normal trace matched another in
test trace, one hit point is retrieved. To
calculate the final and overall similarity score,
we considered three different methods (A, B,
and C) that are variations of Algorithm 2 as
shown below. Practical experiments showed
that the first method provides the best results.

A. The summation of matching hits of
test trace short sequences to all short sequences

of normal traces is considered the similarity
score as seen in steps of Algorithm 3.

B. The maximum matching hits of test
trace short sequences to the short sequences of
all 833 normal traces in ADFA-LD training
data is retrieved as similarity score.

C. For each normal trace, the total
matching hits of test trace short sequences to
those in normal trace is divided by the total
number of distinct short sequences in the
normal trace. Then, the summation of previous
calculation for each normal trace is considered
the similarity score.

- 1
1
\-u Trace of System Calls

U

(Extracting set of
distinct short sequences
of size w=3 using sliding

window)

U

1
1
1
m Distinct Short Sequences

[si[si[s|[si[si[si][s][s[s][si[si]si][si[s]s]

Fig. 3. Architecture of feature extraction component for
short-sequence-based technique.

Algorithm 1. Short-Sequence-Based Training.

Learn(algorithm,options,train_traces)

For 0 <1i <train_traces.length do
short_sequences[i]= distinctEX(train_traces[i],w)

End for

detection_model=

options)

Return detection_model

algorithm.buildModel(short_sequences,

Algorithm 2. Short-Sequence-Based Classification
(Abstract).

Classify(detection_model,test_trace)

test_sequences= distinctEX(test_trace,w)
Class= detection_model.classify(test_sequences)
Return Class
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Algorithm 3. Short-Sequence-Based Classification.

Classify(detection_model,test_trace)

test_sequences= distinctEX(test_trace,w)
train_sequences= detection_model.train_sequences

For 0 <i < detection_model.train_traces.length do
For 0 <j <train_sequences[i].length do
For 0 <k <test_sequences.length do
if(test_sequences[k]== train_sequences[j]
similarity[i]++;
End for
End for
End for

if(sum(similarity)> detection_model.threeshold)
Class = 'normal’

else
class = ‘abnormal’

Return Class

D. Frequency-Based Feature Extraction

As stated previously, a system call trace
consists of system calls issued by a running
process. Several kinds of features can be
extracted from such data. A simple method is
to count calls in the trace which means a trace
is expressed by just a single feature. Such
simple feature is not informative enough to
detect abnormality since the count of calls in
normal and abnormal traces is almost similar.
In general, learning and classifying in
frequency-based feature extraction are done
very fast. However, it suffers from low
accuracy to detect anomalies. To overcome this
issue, a novel feature extraction technique is
proposed to get higher detection rate and even
faster processing by using limited number of
dimensions. In this technique, distinct system
call sequences of varying length are counted.
The length of system call sequence is set from
one to five which results in a vector of five
elements as seen in Fig. 4. For example, say a
trace is expressed by the call sequence {68, 68,
10, 68, 10, 100}, there are three distinct system
call sequences of length one. These are 68, 10
and 100 without repeating 68 or 10. Extracting
these distinct sequences is done through a
sliding window of size one. Taking two as

window size, the distinct sequences for the
same trace is expressed by {(68, 68), (68,10),
(10,68), (10,100)} which equals to four distinct
sequences. The feature vector in the suggested
extraction technique consists of five elements
resulted by changing window size from one to
five. Max window size is five and it is chosen
empirically because ineffective results were
observed  after exceeding this  limit.
Consequently, any trace is transformed into
feature vector of five elements. To better
understand how the frequency-based feature
extraction process is done, following
definitions are considered. Let:

1. U is set of all distinct system calls in
Linux kernel 2.6.38 which is almost 369
system calls based on the unistd.h file from
Linux which contains system call numbers.

2. S denotes a system call, S € U.

3. V is set of all system call traces in
ADFA-LD.

4. T is trace of system calls T € V.
Particularly:

T={Si:i=1, 2, ..., [T|}; where [T| is the
number of system calls in the trace.

5. Cisanysubsequence inatrace T;C€T.

6. From any trace Ti the extracted
feature vector is Fi: {Fi (w), w=1, ..., 5}

7. Distinct (T, w): a function that counts
subsequences of size w without repeating.

Based on the previous definitions,
equation (2) shows how the five elements are
constructed. Combining them, a trace is
transformed into fixed size feature vector. The
feature vector is used by the classification
algorithm to learn a normal profile. Also, any
test trace is converted into feature vector before
going to detection model to detect if an
abnormality exists.

F;(w) = distinct(T;, w) 2
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U_[ Trace of System Calls

U

FE
(Feature extraction/
Trace transformation
into fixed size vector)

U

1 ! I
Vector of Five Features

Fig. 4. Architecture of feature extraction component for
frequency-based technique.

E. Frequency-Based Classification
Algorithms

Referring to Fig. 2, the classification
algorithm would construct the normal profile
using training data available. Any test trace is
then evaluated through measuring the deviation
from normal profile. Normally, a threshold
needs to be specified to decide if the deviation
is significant or not. In the proposed HIDS, the
best threshold is specified empirically. To build
the normal profile in HIDS, several machine
learning algorithms are utilized. The proposed
frequency-based HIDS applies one-class
support vector machine (SVM) “4 with various
kernel functions. Moreover, the widely used
KNN in literature ™9 s utilized which
measures distances between features using
several  distance  functions.  K-furthest
neighbors which is inspired from % is also
applied to construct a normal profile. There are
two steps in the used classification algorithm:
to learn normal profile selecting one or more
features reside in feature vector and then to
classify the transformed test trace as normal or
abnormal. Steps of the training and
classification are shown in Algorithm 4 and
Algorithm 5, respectively. In training
algorithm, ADFA-LD training set is used,
called here: train_traces. A mutually exclusive
set of ADFA-LD is used in classification

algorithm as a testing set; called here:
test_traces. Algorithm 5 will be called for
every trace in the test set. After extracting the
features from the training set, a machine
learning algorithm is used to build the model.
This model will be used for classification.
Several algorithms will be considered and
compared in this research, namely, SVM,
KNN, and KFN. These algorithms have
various parameters for configuration; called
here: options.

Algorithm 4 Frequency-Based Training.

Learn(algorithm,options,train_traces)

For 0 <i <train_traces.length do
short_sequences[i]= distinctEX(train_traces[i],w)
End for

detection_model=
options)

algorithm.buildModel(short_sequences,

Return detection_model

Algorithm 5 Frequency-Based Classification.

Classify(detection_model,test_trace)

For1<w<5do
Feature_Vector[w]= distinct(test_trace,w)
End for
Class= detection_model.classify(Feature_Vector)

Return Class

In KNN and KFN options, various
distance metrics can be used. Chosen metrics
in the experiments are Euclidean, Cosine and
Manhattan. Table 4 shows the method of
calculating each metric where xi represents the
ith element of extracted feature vector from
normal trace and yi is the ith element of
extracted feature vector from test trace. The
feature vector contains 5 features. However,
we shall consider experimentally various
features combinations to decide the feature
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combination that provides best obtainable
results. In Table 4, “n” represents the number
of considered features ranging from 1 to 5.

Table 4. Distance metrics for “n” features.

. i=n
Euclidean 2
distance z("f -
i=1
i=n
' =N 4 0
Cosine 1- REERE
. i=n i=n
distance \/zi=1 x? x\/ziﬂyf
i=n
Manhattan | |
distance z SR
i=1

5. Experiments and Results

We have conducted three experiments to
evaluate the performance of the proposed
HIDS techniques. The developed prototypes
are implemented using Java programming
language, Weka P with Libsvm 52 extension
and MySQL. Experiments are conducted using
a computer that has two CPU cores running at
2.9 GHz and twelve GB of RAM. Figure 5 to
Fig. 9 compare the obtained results with the
published results of six top HIDS systems that
were mentioned in Section 3. The comparisons
are shown in Table 5 and numbered for
convenience. The detection rate (DR), false
alarm rate (FAR) and learning time are used
for evaluation according to 4. These measures
are computed as follows:

e DR is the number of correctly detected
abnormal traces divided by the total
number of abnormal traces contained in
ADFA-LD attack set.

e FAR is the average error rate obtained
from false positive rate (FPR) and false
negative rate (FNR), where:

o FPR is the total number of normal
traces detected as attack incorrectly
divided by the total number of
normal traces contained in ADFA-
LD validation set.

o FNR is the complement of DR,
namely (1 — DR).

e Learning time is the time required to
extract and learn the normal baseline by
the classification algorithm.

Figures 5 and 6 compare the obtained
results from frequency-based techniques in
terms of DR and FAR respectively with the
published results that use similar category of
techniques. While Fig. 7 and 8 compare the
obtained results from short-sequence-based
techniques in terms of DR and FAR
respectively with the published results that use
similar category of techniques. Figure 9
compares the learning time of the proposed
novel algorithm with the best published
algorithm. In the following we compare our
results shown in cases 1, 2 and 3 to the results
of the six top HIDS systems shown in Table 5.
Although Case 9 outperformed all frequency-
based methods, yet it is not compared because
it included randomization step which makes it
unreliable and would generate different profiles
each time the extraction is done on the same
training data.

A. Case 1

The results obtained in this case are the
best of our three cases and are competent to the
best seen results in the literature up to our
knowledge. In this experiment, we used a novel
short-sequence-based extraction and
classification algorithm of system call traces.
We studied three variations of this algorithm as
explained in Subsection 4.3. The variation A of
the  proposed  classification  algorithm
performed best compared to the other two
variations. In this classification algorithm, the
summation of matching hits is taken as the
similarity score. In other words, similarity of a
test trace to the whole normal profile of the
operating system is calculated. Setting the
similarity score threshold empirically to 9000
as the least acceptable score gave a detection
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rate (DR) of 90.48%, and false alarm rate
(FAR) of 22.5%. Compared to all other results
of the six top HIDS systems shown in Table 5,
this experiment achieved best results in terms
of DR and learning time. Compared to case 4
of Table 5 which has the best achieved results
in the literature, the peak detection rates are
almost the same. However, the proposed
algorithm outperformed case 4 in terms of
learning time by taking only seconds instead of
weeks as shown in Fig. 9. Creech et al. % who
developed the semantic approach stated that
the significant burden occurred by the long
time required to extract semantic features in
learning phase limits HIDS to quickly respond
to changes in the normal profile or baseline.
Consequently, an HIDS based on semantic
approach will be inflexible to eventual
environmental changes like installing new
services, changing the roles and adding new
user accounts. On the other hand, the proposed
novel short-sequence-based algorithm does not
suffer from any of these limitations and it can
respond to changes in the baseline in a matter
of seconds. Additionally, it can learn
incrementally without the need to rebuild the
whole Dbaseline from scratch. However, the
quick learning time is at the expense of FAR
which is higher in the proposed algorithm in
this paper compared to semantic approach that
has lower FAR as seen in Fig. 8.
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80% f-—--————— e m - -~ 70.00% *
65.00% 65.00% 60.00% 60.00%
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Fig. 5. Comparison of detection rates between frequency-
based techniques.
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Fig. 6. Comparison of false alarm rates between
frequency-based techniques.
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Fig. 7. Comparison of detection rates between short-based
techniques.
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Fig. 8. Comparison of false alarm rates between short-
based techniques.
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Fig. 9. Comparison of learning times between short-
sequence-based techniques. Note that two weeks
are assumed for literature to represent ‘‘few
weeks".

B. Case 2

In this experiment, every trace Iis
transformed into a set of features using
frequency-based feature extraction technique.
We used one-class SVM as frequency-based
classification algorithm and conducted an
exhaustive search of all possible combinations
of up to five features to evaluate and select the
best combination. The best results are obtained
by using only a single feature which is the
count of unique system calls in a trace. In one-
class SVM, linear kernel function is chosen
with nu parameter set to 0.2 empirically to
control the number of support vectors. The
results achieved were 65% DR and 26.6%
FAR. Compared to cases 7 and 8 of Table 5
which used KNN and KMC respectively with
several frequency-based features, the results of
this experiment outperformed in terms of DR
and FAR as seen in Fig. 5 and 6. However,
case 6 that used SVM with hybrid extraction
technique performed better.

The most important finding of this
experiment is that the count of unique system
calls is a highly informative feature and may
give good results if used with other
combinations of extracted features in the
literature.

Table 5. Comparison of proposed HIDS with HIDS in the
Literature Review.

Feature
Extraction
Classification
Algorithm
Learn time

Short- Proposed

1 | Proposed | Sequence- | novel 90.48% | 22.5% | s
Based algorithm
Frequency- SVM

2 | Proposed Bas(jed Y (Linear 65% 26.6% | ms

function)

3| Proposed | FrednY" | ke 65% | 27% | ms
Short-

4 | [12] [42] | Sequence- | ELM 90% 12.5% | week
Based
Short-

5 | [12] [42] | Sequence- | SVM 80% 17.5% | week
Based
Frequency-

6 | [43] Sﬁgﬁtd with | s\/m 700 | 25% |s
Sequences

7 | 7115 E;esi‘éency' KNN 60% | 30% |s

8 | [17] EZ‘L‘&G”CV' KMC 60% | 30% |s

9 |44 Etat's“ca' KNN 8% | 21% |s
eatures

C. Case 3

In this experiment, we used KNN and
KFN as frequency-based classification
algorithms. KFN performed better than KNN
by setting k=1, threshold r=47 and selecting the
efficient Manhattan distance metric. As in case
2, the best selection of feature combination
included only the count of unique system calls
in a trace. Compared to cases 7 and 8 of Table
5, which used KNN and KMC with several
frequency-based features, we obtained slightly
better DR with lower FAR and rapid learning
speed using only a single feature instead of
several features. However, the hybrid
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extraction technique in case 6 brought better
results using SVM.

We can conclude that KFN can bring
better results than KNN using frequency-based
feature extraction. This needs to be further
investigated using extraction techniques from
the literature.

6. Conclusions and Future Work

In the present work, we developed a
novel host-based IDS that can detect zero-day
attacks based on anomaly detection. The main
contribution is an anomaly detection algorithm
using distinct short-sequences extraction from
system call traces. This algorithm utilized a
novel method to extract distinct short
sequences of system calls per normal trace to
create a normal profile. Then, a companion
classification algorithm is used to evaluate the
IDS. A prototype is developed using Java and
MySQL and tested using the ADFA-LD
dataset. The best results obtained were
detection rate of 90.48% and false alarm rate of
22.5% with learning time of about 30 seconds.
To the best of our knowledge, the obtained
detection rate is much higher than almost all
compared systems and is very close to the
highest result. Moreover, the proposed system
provides the best combination of high detection
rate and very small learning time. This
provides high capability to detect zero-day
attacks and also makes it flexible to cope with
any environmental changes since it can learn
quickly and incrementally without the need to
rebuild the whole classifier from scratch.
Nevertheless, there are still some limitations in
the proposed HIDS that need to be considered
as future work. The false alarm rate needs to be
decreased by improving the extraction and the
classification algorithms. Moreover, the
abnormality threshold value has to be
determined automatically.
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