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Abstract. To detect zero-day attacks in modern systems, several host-based intrusion detection 

systems are proposed using the newly compiled ADFA-LD dataset. These techniques use the 

system call traces of the dataset to detect anomalies, but generally they suffer either from high 

computational cost as in window-based techniques or low detection rate as in frequency-based 

techniques. To enhance the accuracy and speed, we propose a host-based intrusion detection 

system based on distinct short sequences extraction from traces of system calls with a novel 

algorithm to detect anomalies. To the best of our knowledge, the obtained results of the proposed 

system are superior to all up-to-date published systems in terms of computational cost and 

learning time. The obtained detection rate is also much higher than almost all compared systems 

and is very close to the highest result. In particular, the proposed system provides the best 

combination of high detection rate and very small learning time. The developed prototype 

achieved 90.48% detection rate, 22.5% false alarm rate, and a learning time of about 30 seconds. 

This provides high capability to detect zero-day attacks and also makes it flexible to cope with 

any environmental changes since it can learn quickly and incrementally without the need to 

rebuild the whole classifier from scratch. 
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1. Introduction 

As online services are spreading over the 

Internet, the security and privacy concerns are 

arising which make it risky choice for 

organizations 
[1]

. Generally, the Internet is a 

fertile field for crackers and hackers to target 

due to various combinations of attack vectors 

available such as SQL injection, XSS, IP 

spoofing, ARP spoofing, DNS poisoning, DOS 

and DDOS. For example, DDOS attack on 

Amazon caused BitBucket.org, which is hosted 

in AWS, to be unavailable for few hours 
[2]

. 

Utilizing firewall is a good way to protect 

online services from such attacks. However, 

relying on a single line of defense is not 

enough in cases like firewall bypass by insiders 

or due to a zero-day vulnerability in firewall. 

Thus, there is a need to have a second line of 

defense by utilizing accurate and reliable 

intrusion detection systems (IDS). Recently, 

huge data breaches of large companies and 

organizations including Dropbox 
[3]

, Yahoo 
[4]

 

and LinkedIn 
[5]

 occurred. These showed up the 

weakness of employed IDS to detect such 

attacks and severity of issued attacks.  

To mitigate new generation zero-day 

attacks, researchers proposed several IDS and 

evaluated these IDSs on newly compiled 



94                                           Yaqoob S. Ikram and Mohamed A. I. Madkour 

 

dataset (ADFA-LD) that is based on modern 

systems. Obtained results need to be improved 

in terms of accuracy and speed of learning 

normal behavior. Thus, the main problems 

addressed in this paper are the accuracy and 

speed of IDS to learn.  

The main contribution in this paper is 

host based anomaly detection using distinct 

short-sequences extraction. A novel algorithm 

is utilized to extract only distinct short 

sequences of system calls per normal trace to 

create a normal profile. Then, a companion 

classification algorithm is used to evaluate the 

IDS. The developed prototype achieved 

90.48% detection rate (DR), 22.5% false alarm 

rate (FAR), and a learning time of about 30 

seconds. A second technique is investigated 

based on anomaly detection using frequency-

based feature extraction from traces of system 

calls. A novel frequency-based technique is 

used to extract highly representative features 

from raw dataset and then applied semi-

supervised machine learning techniques on 

these features. The developed prototype 

achieved 65% detection rate and 26.6% false 

alarm rate with learning time of few 

milliseconds. This shows that the proposed 

feature extraction using distinct short-

sequences performs better than the frequency-

based technique. The rest of the paper is 

organized as follows: Section 2 gives 

background and the related work is given in 

Section 3. Section 4 covers the details of the 

proposed solution and Section 5 validates the 

obtained results. The last section presents 

conclusion and future work. 

2. Background 

Anomaly-based IDS has been 

implemented with various techniques and 

methods. Each technique has its own 

advantages and disadvantages. These 

techniques are classified into statistical 

anomaly detection, machine learning based 

anomaly detection and data mining based 

anomaly detection
 [6]

. In the following 

subsection, we provide a background about 

anomaly detection techniques used in system 

call traces to derive the classification models. 

A.  Anomaly Detection Techniques in System 

Call Traces 

Two categories of techniques are there to 

detect anomaly in system call traces 
[7]

: short-

sequence-based and frequency-based. The 

short-sequence-based technique creates a 

profile of normal behavior by extracting sub 

sequences from the original logged traces. A 

sliding window technique is used to extract 

these sub sequences. To detect abnormal 

behavior, a significant deviation of test traces 

from the extracted normal traces triggers the 

abnormality. Pre-determined threshold decides 

whether a deviation is significant or not 
[8]

. 

Short-sequence-based technique considers the 

positional information of system call traces 

which results in creating more accurate profile. 

In learning process, numerous approaches are 

used such as hidden Markov model (HMM) 
[9-

11]
, support vector machines (SVM) 

[12] 
and 

artificial neural network (ANN) 
[13-14]

. 

Generally, the learning process in short-

sequence-based technique takes long time 
[12]

. 

In contrast, frequency-based technique needs 

shorter learning time. It transforms the normal 

traces into vector depending on the frequency 

of system calls in the normal trace which 

makes it very efficient in terms of 

computation. A significant drawback of this 

technique is the low accuracy of detection 

since it ignores the positional information in 

the collected traces. Detection models can be 

derived from the transformed traces through 

various methods including k-nearest neighbor 

(kNN) 
[15-16]

, k-means clustering 
[17]

 and SVM 
[18] 

articles should present attractive studies, 

new advances, and knowledge about a topic of 

significance. Original Research Article must 

be supported by the results. 
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B. Datasets for HIDS Evaluation 

In the literature, authors used to design 

their proposed IDS systems using publicly 

available benchmark datasets. The use of 

datasets comes handy because it creates a 

unified and unbiased baseline for evaluation. 

Moreover, it saves time for authors to prepare a 

real-time environment to test and evaluate their 

IDS. In this subsection, both old and up to date 

datasets are overviewed. 

1. KDD Datasets 

Over the past decade, authors had 

evaluated their IDS using old KDD dataset 

which was prepared in 1998-2000 
[19]

. KDD 

was relevant at the first time of compilation. 

Over time, it was outdated and no longer 

proper to be used for validating IDS on modern 

systems. Researchers used KDD although of its 

irrelevance because alternatives were not 

available. The KDD dataset included wide 

range of data collected under Solaris-based 

system environment. Among the collected data, 

system call sequences were available by 

extracting them from BSM audit data. Forrest 
[20] 

introduced the use of these system call 

traces for detecting intrusions. Later, several 

improvements are proposed 
[21, 8, 22, 7]

. In 

addition to aging, the computer technology is 

highly dynamic and changes rapidly. This 

resulted in KDD dataset to be irrelevant 

quickly and impractical 
[23-24]

. Moreover, 

generalization of results obtained from Solaris-

based system is not logical since Solaris-based 

system has limited usage in cyber community 

compared to Linux 
[25-26]

. The most critical 

point in KDD collection is the existence of 

several data artifacts within it which make it 

not reliable
 [27]

. 

2. ADFA Dataset 

Given all critiques in KDD datasets, 

researchers decided to prepare newer datasets 

that overcome some or all of the issues existed 

in the old datasets. One attempt was UNM 

dataset compiled in 2004 
[28]

. The dataset was, 

however, focused on processes of only 

selected programs instead of the whole system 
[29]

. This means the normal profile is going to 

model the behavior of these programs only. 

Moreover, UNM dataset is compiled in UNIX 

based operating system that has fewer 

deployments in cyber community compared to 

Linux operating system. Recently, a modern 

intrusion detection dataset (ADFA) is 

compiled and made available for developing 

and evaluating IDS systems
 [29]

. The ADFA 

dataset is based on modern kernels such as 

Linux Kernel 2.6.38. For example, Ubuntu is a 

popular operating system that is based on 

Linux Kernel and it has the highest 

deployments on one of the most popular cloud 

platforms called OpenStack 
[30]

. Consequently, 

the ADFA datasets can be generalized for 

testing and evaluating HIDS for modern 

systems. It's important to note that ADFA 

datasets target HIDS which comes handy when 

firewalls are bypassed by attackers. For HIDS 

system to be improved, evaluated precisely 

and deployed in modern systems, it needs an 

accurate baseline of normal behavior in 

modern systems. Once the HIDS learns this 

normal profile, it compares the future system 

behavior against it to detect intrusions. ADFA 

datasets target two popular host operating 

systems, namely Windows and Linux. This 

research will shed light on the Linux dataset 

ADFA-LD. The dataset was prepared in 

Ubuntu Linux environment of version 11.04, 

and this environment was fully patched in the 

time of dataset compilation. Web services are 

enabled in the host by installing Apache 2.2.17 
[31]

 along with PHP 5.3.5 
[32]

. To allow data 

storage and dynamic content, MySQL 14.14 
[33] 

was installed. FTP and SSH services were 

started also by their default ports to access the 

host remotely. In addition, a web application 

called Tiki Wiki 8.1 
[34]

 was installed and 

prepared to serve the online users. This version 

of the web application is chosen intentionally 
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as it has a critical exploit that allows for 

remote code execution by injecting PHP code 
[35]

. This whole setup is considered a realistic 

Linux server that has all these services enabled 

with some vulnerabilities existed. Several 

types of attacks are selected carefully and 

issued against the Linux kernel in order to 

represent real attempts to hack a well-

protected system. ADFA-LD included 

password brute-force attacks and payload-

based attacks. The brute-force attacks are 

issued to guess FTP or SSH users and 

passwords. Payload-based attacks are issued to 

execute arbitrary code on the server remotely. 

The remote code execution is expressed by 

different attack types in ADFA-LD due to the 

highly different methods used to achieve each 

one. This means the attack patterns are going 

to be different also. Note that FTP and SSH 

credentials stealing attempts are highly valid 

for the attacker as these services are used to be 

accessible from remote machines for 

administration purposes. Table 1 summarizes 

the attacks included in ADFA-LD and their 

vectors. Note that for payload upload and 

management, an open source hacking tool 

called Metasploit 
[36]

 is used. 

Traces of system call are considered a 

very accurate data source for anomaly based 

intrusion detection system 
[29]

. Therefore, it's 

selected to prepare the ADFA-LD datasets. 

ADFA-LD consists of three groups. These 

groups are validation, training and attack. 

Validation and training groups contain normal 

system call traces. i.e., traces that had been 

collected using audit program while the system 

was being used for normal operations such as 

document writing with Latex and web 

browsing. Attack group contains traces that 

had been collected while attacks were being 

issued against the host. Note that the collected 

traces in ADFA-LD training group were 

configured to filter out any traces outside the 

range 300 bytes to 6 kilobytes. Additionally, 

validation traces in the range between 300 

bytes and 10 kilobytes were filtered out. Table 

2 shows each group of traces in ADFA-LD 

with number of traces in that group. In 

validation folder of ADFA-LD dataset, there 

are 4372 traces each of which in a separate 

file, followed by an extra file that does not 

contain a trace. This makes the total number of 

traces in validation group different than what's 

depicted by Xie 
[15]

. Table 3 shows detailed 

distribution of attack traces. Each trace in 

ADFA-LD consists of system call indices 

instead of names for simplicity. The unistd.sh 

file in Linux operating system can be 

referenced to map the numerical indices to the 

corresponding system call names. 

Table 1. Summary of attacks in ADFA-LD and their 

vectors. 

Attack Vector 

Hydra-FTP  [37] FTP service 

Hydra-SSH [37] SSH Service 

Add-Super-User 
Poisoned executable  through 

social engineering 

Java Meterpreter 

[36] 
Web: crafted payload upload 

Linux 

Meterpreter [36] 

Poisoned executable  through 

social engineering 

C100 Web shell 

[38] 
Web: crafted payload upload 

Table 2. ADFA-LD trace groups. 

Trace group Number of trace files 

Training 833 

Validation 4372 

Attack 746 

 

Table 3. Distribution of attack traces to each type of attack. 

Attack Name Number of trace files 

Hydra FTP 162 

Hydra SSH 148 

Java Meterpreter 125 

Meterpreter 75 

Web shell 118 

Add-user 91 
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3. Related Work 

A. HIDS Using KDD 

In KDD era, attacks footprints were clear 

and focused on single processes rather than 

being spread on multiple processes as in 

modern systems. To detect anomalies in system 

call traces, several HIDS systems were 

proposed based on KDD which were 

considered the basis for later researches. For 

example, statistical analysis of KDD audit 

trails was employed 
[39]

. They achieved a 

detection rate (DR) of 90% with high false 

alarm rate (FAR) of 40%. Yeung and Ding 
[40]

 

used hidden Markov model (HMM) and 

entropy analysis of system calls. The best 

results obtained were 91.7% at DR with low 

FAR of 10%. Data mining techniques brought 

good results when applied on KDD. For 

instance, SVM was applied on subset of KDD 

and achieved 99.6% at DR with only 4.17% 

FAR 
[18]

. Moreover, KNN was utilized to 

classify process traces achieving 96.3% DR 

and 6.2% FAR
 [41]

.  

B. HIDS Using ADFA-LD 

Since KDD no longer represents modern 

systems, applying same algorithms for feature 

extraction and detecting attacks in the new 

ADFA-LD resulted in a lower performance. 

Thus, novel approaches are proposed by 

authors that can detect new generation attacks. 

One of the breakthroughs in the field of 

detecting modern zero-day attacks is the 

semantic approach in feature extraction 

proposed by Creech and Hu. However, this 

approach suffers from a very large learning 

time of few weeks to create a huge dictionary 

of normal profile from normal traces 
[12, 42]

. 

Creech and Hu selected SVM and extreme 

learning machine (ELM) as predictors that 

accept the transformed dataset as input for 

learning. When applied on ADFA-LD, 90% 

DR is achieved and 12.5% FAR using extreme 

learning machine (ELM) as predictor. With 

one-class SVM, the semantic approach for 

feature extraction achieved a performance of 

80% DR and 17.5% FAR. To avoid the long 

learning time of the semantic approach in 

feature extraction, Xie et al. 
[15, 17]

 proposed 

frequency-based technique as an alternative to 

short-sequence-based for feature extraction by 

converting traces into multi-dimensional 

frequency vectors of equal size. Using KNN 

classification, only 60% DR was achieved at 

30% FAR whereas KMC classification 

achieved a little bit higher DR and lower FAR 

in comparison. Moreover, Xie et al.
 [43]

 

proposed another novel technique for HIDS 

development which utilizes short-sequence-

based technique efficiently to extract features 

and SVM for classification. They achieved 

70% DR with 25% FAR. The main drawback 

in the proposed methods that utilize frequency-

based techniques is the inability to extract 

accurate features that can bring clear 

differences between attack traces and normal 

traces. A novel approach similar to frequency-

based technique is proposed by Haider et al. 
[44]

 

in which statistical features are extracted from 

system call traces to form normal profile. The 

results obtained were promising by achieving 

78% DR and 21% FAR using KNN for 

classification. However, the main drawback in 

the approach is that the proposed statistical 

feature extraction algorithm has randomization 

steps which result in different outputs each 

time extraction is done on the same input of 

data. This leads to creating an instable profile 

that leads to random detection rates which is 

not reliable.  

4. Design and Implementation 

The present paper considers the new 

benchmark ADFA-LD dataset for developing 

an anomaly-based HIDS using frequency-

based and short-sequence-based techniques. 

ADFA-LD dataset is compiled in Linux 

operating system environment. Like any 

typical operating systems, Linux OS has 
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running processes during operation time. These 

processes utilize various resources of computer 

through system calls. ADFA-LD contains 

system call traces which are sequences of 

system calls called by various processes during 

their execution time. A system call in ADFA-

LD trace is represented as a number instead of 

the name for simplicity. Each number refers to 

a unique system call in Linux kernel 2.6.38. 

Figure 1 represents portion of a trace (UTD-

0002) from training set in ADFA-LD. To learn 

the normal behavior, the HIDS proposed in this 

paper must be trained and evaluated at first 

using a set of normal traces. Next it should be 

ready to decide whether a new trace is normal 

or abnormal. Direct matching of traces 

obviously does not work well. Therefore, two 

categories of techniques are used for feature 

extraction as in the literature; short-sequence-

based and frequency-based. To have an 

accurate HIDS, the extracted features should 

contain enough information that can be useful 

for differentiating normal traces from abnormal 

ones. Moreover, the detection technique should 

be precise enough to detect abnormalities. 

Along with HIDS accuracy, the time of 

learning normal profile, evaluation speed and 

resource consumption are all important 

characteristics of a good HIDS. All these 

characteristics will be taken into consideration 

for the proposed enhanced HIDS.  

 

Fig. 1. A trace representation in ADFA-LD 

A. Overall Design 

Figure 2 shows how the proposed HIDS 

works. Basically, any HIDS consists of three 

main components; the data source, which is 

ADFA-LD dataset in this context, the feature 

extraction component and the classification 

algorithm. The data source in the proposed 

HIDS consists of both training and testing data. 

In the training phase, the classification 

algorithm takes as input training part of 

ADFA-LD which contains normal behavior. 

The output of this phase is a detection model. 

This model takes the testing part of ADFA-LD 

as input which consists of both normal and 

abnormal behavior. Based on the detection 

model, evaluation phase decides whether the 

input data, which is a system call trace, is 

abnormal or not. If abnormal an alarm will be 

raised. Note that in the proposed HIDS design, 

system call traces are first transformed before 

going as input to classification algorithm using 

feature extraction component. Feature 

extraction is very crucial component for HIDS 

that is based on system call traces. It extracts 

informative and representative features from 

the raw data. If the extracted features are 

irrelevant, then the classification algorithms 

would not give good results. In this paper, 

feature extraction techniques of two categories 

are proposed, namely frequency-based 

extraction and short-sequence-based extraction. 

 

Fig. 2. Overall Architecture of the proposed HIDS. 

B. Short-Sequence-Based Feature Extraction 

In short-sequence-based technique, the 

trace is divided into short sequences based on a 

window size. One advantage of this technique 

is that it preserves the positional information of 

system calls and theoretically decreases the 

possibility of mimicry attacks on the IDS 
[45]

. 

There are several ways to take the advantage of 

this technique. In this paper, a novel algorithm 

that is inspired from 
[20] 

and 
[8] 

is used for 

extracting sequences of system calls in a trace 

and determining the abnormality of any trace. 

The algorithm takes as input the trace and 

54 175 120 175 175 3 … 140
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produces sets of distinct or unique sequences of 

size “w” for that trace. The parameter “w” 

determines number of system calls in an 

extracted sequence. Applying the extraction 

technique to all normal traces, a database of 

normal profile is built which contains distinct 

sequences for each normal trace. To understand 

the extraction algorithm better, Fig. 3 

elaborates on the flow of the algorithm steps. 

Suppose a normal trace is recorded and it 

consists of the following system calls separated 

by spaces: (54 175 120 175 175 3 175 175 3). 

Let the window size w=3. The extraction 

output is going to be: {(54 175 120), (175 120 

175), (120 175 175), (175 175 3), (175 3 175), 

(3 175 175)}. Extracting the distinct short 

sequences can be expressed by equation 1 as 

follows: 

                                 (1) 

C. Short-Sequence-Based Classification 

Algorithms 

After creating a database of normal 

profile using ADFA-LD training data as shown 

in Algorithm 1, short sequence extraction 

algorithm is again used on any test trace to 

extract distinct short sequences. Now to detect 

anomaly, the classification algorithm that 

learned the normal profile would scan the test 

trace as shown in Algorithm 2. The proposed 

algorithm calculates the similarity of the test 

trace to each normal trace in normal profile. 

This is done by direct matching of distinct 

short sequences of the test trace to short 

sequences of the normal traces. In case a short 

sequence in normal trace matched another in 

test trace, one hit point is retrieved. To 

calculate the final and overall similarity score, 

we considered three different methods (A, B, 

and C) that are variations of Algorithm 2 as 

shown below. Practical experiments showed 

that the first method provides the best results. 

A. The summation of matching hits of 

test trace short sequences to all short sequences 

of normal traces is considered the similarity 

score as seen in steps of Algorithm 3. 

B. The maximum matching hits of test 

trace short sequences to the short sequences of 

all 833 normal traces in ADFA-LD training 

data is retrieved as similarity score. 

C. For each normal trace, the total 

matching hits of test trace short sequences to 

those in normal trace is divided by the total 

number of distinct short sequences in the 

normal trace. Then, the summation of previous 

calculation for each normal trace is considered 

the similarity score. 

 

Fig. 3. Architecture of feature extraction component for 

short-sequence-based technique. 
 

Algorithm 1. Short-Sequence-Based Training. 

Learn(algorithm,options,train_traces) 

 

For 0 ≤ i < train_traces.length do 

  short_sequences[i]= distinctEX(train_traces[i],w) 

End for 

detection_model= algorithm.buildModel(short_sequences, 

options) 

Return detection_model 

Algorithm 2. Short-Sequence-Based Classification 

(Abstract). 

Classify(detection_model,test_trace) 

 

test_sequences= distinctEX(test_trace,w) 

Class= detection_model.classify(test_sequences) 

Return Class 
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Algorithm 3. Short-Sequence-Based Classification. 

Classify(detection_model,test_trace) 

 

test_sequences= distinctEX(test_trace,w) 

train_sequences= detection_model.train_sequences 

 

For 0 ≤ i < detection_model.train_traces.length do 

 For 0 ≤ j < train_sequences[i].length do 

   For 0 ≤ k < test_sequences.length do 

    if(test_sequences[k]== train_sequences[j] 

      similarity[i]++; 

   End for 

 End for 

End for 

 

if(sum(similarity)> detection_model.threeshold) 

  Class = 'normal' 

else 

  class = 'abnormal' 

Return Class 

 

D. Frequency-Based Feature Extraction 

As stated previously, a system call trace 

consists of system calls issued by a running 

process. Several kinds of features can be 

extracted from such data. A simple method is 

to count calls in the trace which means a trace 

is expressed by just a single feature. Such 

simple feature is not informative enough to 

detect abnormality since the count of calls in 

normal and abnormal traces is almost similar. 

In general, learning and classifying in 

frequency-based feature extraction are done 

very fast. However, it suffers from low 

accuracy to detect anomalies. To overcome this 

issue, a novel feature extraction technique is 

proposed to get higher detection rate and even 

faster processing by using limited number of 

dimensions. In this technique, distinct system 

call sequences of varying length are counted. 

The length of system call sequence is set from 

one to five which results in a vector of five 

elements as seen in Fig. 4. For example, say a 

trace is expressed by the call sequence {68, 68, 

10, 68, 10, 100}, there are three distinct system 

call sequences of length one. These are 68, 10 

and 100 without repeating 68 or 10. Extracting 

these distinct sequences is done through a 

sliding window of size one. Taking two as 

window size, the distinct sequences for the 

same trace is expressed by {(68, 68), (68,10), 

(10,68), (10,100)} which equals to four distinct 

sequences. The feature vector in the suggested 

extraction technique consists of five elements 

resulted by changing window size from one to 

five. Max window size is five and it is chosen 

empirically because ineffective results were 

observed after exceeding this limit. 

Consequently, any trace is transformed into 

feature vector of five elements. To better 

understand how the frequency-based feature 

extraction process is done, following 

definitions are considered. Let:  

1. U is set of all distinct system calls in 

Linux kernel 2.6.38 which is almost 369 

system calls based on the unistd.h file from 

Linux which contains system call numbers. 

2. S denotes a system call, S ∈ U. 

3. V is set of all system call traces in 

ADFA-LD.  

4. T is trace of system calls T ∈ V. 

Particularly: 

T = {Si: i= 1, 2, …, |T|}; where |T| is the 

number of system calls in the trace. 

5. C is any subsequence in a trace T; C ∈ T.  

6. From any trace Ti the extracted 

feature vector is Fi: {Fi (w), w=1, …, 5} 

7. Distinct (T, w): a function that counts 

subsequences of size w without repeating. 

Based on the previous definitions, 

equation (2) shows how the five elements are 

constructed. Combining them, a trace is 

transformed into fixed size feature vector. The 

feature vector is used by the classification 

algorithm to learn a normal profile. Also, any 

test trace is converted into feature vector before 

going to detection model to detect if an 

abnormality exists. 

                                (2) 
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Fig. 4. Architecture of feature extraction component for 

frequency-based technique. 

E. Frequency-Based Classification 

Algorithms 

Referring to Fig. 2, the classification 

algorithm would construct the normal profile 

using training data available. Any test trace is 

then evaluated through measuring the deviation 

from normal profile. Normally, a threshold 

needs to be specified to decide if the deviation 

is significant or not. In the proposed HIDS, the 

best threshold is specified empirically. To build 

the normal profile in HIDS, several machine 

learning algorithms are utilized. The proposed 

frequency-based HIDS applies one-class 

support vector machine (SVM) 
[46]

 with various 

kernel functions. Moreover, the widely used 

KNN in literature 
[47-49]

 is utilized which 

measures distances between features using 

several distance functions. K-furthest 

neighbors which is inspired from 
[50]

 is also 

applied to construct a normal profile. There are 

two steps in the used classification algorithm: 

to learn normal profile selecting one or more 

features reside in feature vector and then to 

classify the transformed test trace as normal or 

abnormal. Steps of the training and 

classification are shown in Algorithm 4 and 

Algorithm 5, respectively. In training 

algorithm, ADFA-LD training set is used, 

called here: train_traces. A mutually exclusive 

set of ADFA-LD is used in classification 

algorithm as a testing set; called here: 

test_traces. Algorithm 5 will be called for 

every trace in the test set. After extracting the 

features from the training set, a machine 

learning algorithm is used to build the model. 

This model will be used for classification. 

Several algorithms will be considered and 

compared in this research, namely, SVM, 

KNN, and KFN. These algorithms have 

various parameters for configuration; called 

here: options.  

Algorithm 4 Frequency-Based Training. 

Learn(algorithm,options,train_traces) 

 

For 0 ≤ i < train_traces.length do 

  short_sequences[i]= distinctEX(train_traces[i],w) 

End for 

detection_model= algorithm.buildModel(short_sequences, 

options) 

Return detection_model 

Algorithm 5 Frequency-Based Classification. 

Classify(detection_model,test_trace) 

 

For 1 ≤ w ≤ 5 do  

   Feature_Vector[w]= distinct(test_trace,w) 

End for 

Class= detection_model.classify(Feature_Vector) 

Return Class 

 

In KNN and KFN options, various 

distance metrics can be used. Chosen metrics 

in the experiments are Euclidean, Cosine and 

Manhattan. Table 4 shows the method of 

calculating each metric where xi represents the 

ith element of extracted feature vector from 

normal trace and yi is the ith element of 

extracted feature vector from test trace. The 

feature vector contains 5 features. However, 

we shall consider experimentally various 

features combinations to decide the feature 
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combination that provides best obtainable 

results. In Table 4, “n” represents the number 

of considered features ranging from 1 to 5. 

Table 4. Distance metrics for “n” features. 

Euclidean 
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√∑         
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∑|      |

   

   

 

 

5. Experiments and Results 

We have conducted three experiments to 

evaluate the performance of the proposed 

HIDS techniques. The developed prototypes 

are implemented using Java programming 

language, Weka 
[51]

 with Libsvm 
[52]

 extension 

and MySQL. Experiments are conducted using 

a computer that has two CPU cores running at 

2.9 GHz and twelve GB of RAM. Figure 5 to 

Fig. 9 compare the obtained results with the 

published results of six top HIDS systems that 

were mentioned in Section 3. The comparisons 

are shown in Table 5 and numbered for 

convenience. The detection rate (DR), false 

alarm rate (FAR) and learning time are used 

for evaluation according to 
[44]

. These measures 

are computed as follows: 

 DR is the number of correctly detected 

abnormal traces divided by the total 

number of abnormal traces contained in 

ADFA-LD attack set. 

 FAR is the average error rate obtained 

from false positive rate (FPR) and false 

negative rate (FNR), where: 

o FPR is the total number of normal 

traces detected as attack incorrectly 

divided by the total number of 

normal traces contained in ADFA-

LD validation set. 

o FNR is the complement of DR, 

namely (1 – DR). 

 Learning time is the time required to 

extract and learn the normal baseline by 

the classification algorithm. 

Figures 5 and 6 compare the obtained 

results from frequency-based techniques in 

terms of DR and FAR respectively with the 

published results that use similar category of 

techniques. While Fig. 7 and 8 compare the 

obtained results from short-sequence-based 

techniques in terms of DR and FAR 

respectively with the published results that use 

similar category of techniques. Figure 9 

compares the learning time of the proposed 

novel algorithm with the best published 

algorithm. In the following we compare our 

results shown in cases 1, 2 and 3 to the results 

of the six top HIDS systems shown in Table 5. 

Although Case 9 outperformed all frequency-

based methods, yet it is not compared because 

it included randomization step which makes it 

unreliable and would generate different profiles 

each time the extraction is done on the same 

training data.  

A. Case 1 

The results obtained in this case are the 

best of our three cases and are competent to the 

best seen results in the literature up to our 

knowledge. In this experiment, we used a novel 

short-sequence-based extraction and 

classification algorithm of system call traces. 

We studied three variations of this algorithm as 

explained in Subsection 4.3. The variation A of 

the proposed classification algorithm 

performed best compared to the other two 

variations. In this classification algorithm, the 

summation of matching hits is taken as the 

similarity score. In other words, similarity of a 

test trace to the whole normal profile of the 

operating system is calculated. Setting the 

similarity score threshold empirically to 9000 

as the least acceptable score gave a detection 



Enhanced Host-Based Intrusion Detection Using System Call Traces                                                           103 

 

rate (DR) of 90.48%, and false alarm rate 

(FAR) of 22.5%. Compared to all other results 

of the six top HIDS systems shown in Table 5, 

this experiment achieved best results in terms 

of DR and learning time. Compared to case 4 

of Table 5 which has the best achieved results 

in the literature, the peak detection rates are 

almost the same. However, the proposed 

algorithm outperformed case 4 in terms of 

learning time by taking only seconds instead of 

weeks as shown in Fig. 9. Creech et al. 
[42]

 who 

developed the semantic approach stated that 

the significant burden occurred by the long 

time required to extract semantic features in 

learning phase limits HIDS to quickly respond 

to changes in the normal profile or baseline. 

Consequently, an HIDS based on semantic 

approach will be inflexible to eventual 

environmental changes like installing new 

services, changing the roles and adding new 

user accounts. On the other hand, the proposed 

novel short-sequence-based algorithm does not 

suffer from any of these limitations and it can 

respond to changes in the baseline in a matter 

of seconds. Additionally, it can learn 

incrementally without the need to rebuild the 

whole baseline from scratch. However, the 

quick learning time is at the expense of FAR 

which is higher in the proposed algorithm in 

this paper compared to semantic approach that 

has lower FAR as seen in Fig. 8.  

 

Fig. 5. Comparison of detection rates between frequency-

based techniques. 

 

Fig. 6. Comparison of false alarm rates between 

frequency-based techniques. 

 

Fig. 7. Comparison of detection rates between short-based 

techniques. 

 

Fig. 8. Comparison of false alarm rates between short-

based techniques. 
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Fig. 9. Comparison of learning times between short-

sequence-based techniques. Note that two weeks 

are assumed for literature to represent "few 

weeks". 

B. Case 2 

In this experiment, every trace is 

transformed into a set of features using 

frequency-based feature extraction technique. 

We used one-class SVM as frequency-based 

classification algorithm and conducted an 

exhaustive search of all possible combinations 

of up to five features to evaluate and select the 

best combination. The best results are obtained 

by using only a single feature which is the 

count of unique system calls in a trace. In one-

class SVM, linear kernel function is chosen 

with nu parameter set to 0.2 empirically to 

control the number of support vectors. The 

results achieved were 65% DR and 26.6% 

FAR. Compared to cases 7 and 8 of Table 5 

which used KNN and KMC respectively with 

several frequency-based features, the results of 

this experiment outperformed in terms of DR 

and FAR as seen in Fig. 5 and 6. However, 

case 6 that used SVM with hybrid extraction 

technique performed better. 

The most important finding of this 

experiment is that the count of unique system 

calls is a highly informative feature and may 

give good results if used with other 

combinations of extracted features in the 

literature.  

Table 5. Comparison of proposed HIDS with HIDS in the 

Literature Review. 
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C. Case 3 

In this experiment, we used KNN and 

KFN as frequency-based classification 

algorithms. KFN performed better than KNN 

by setting k=1, threshold r=47 and selecting the 

efficient Manhattan distance metric. As in case 

2, the best selection of feature combination 

included only the count of unique system calls 

in a trace. Compared to cases 7 and 8 of Table 

5, which used KNN and KMC with several 

frequency-based features, we obtained slightly 

better DR with lower FAR and rapid learning 

speed using only a single feature instead of 

several features. However, the hybrid 
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extraction technique in case 6 brought better 

results using SVM. 

We can conclude that KFN can bring 

better results than KNN using frequency-based 

feature extraction. This needs to be further 

investigated using extraction techniques from 

the literature. 

6. Conclusions and Future Work 

In the present work, we developed a 

novel host-based IDS that can detect zero-day 

attacks based on anomaly detection. The main 

contribution is an anomaly detection algorithm 

using distinct short-sequences extraction from 

system call traces. This algorithm utilized a 

novel method to extract distinct short 

sequences of system calls per normal trace to 

create a normal profile. Then, a companion 

classification algorithm is used to evaluate the 

IDS. A prototype is developed using Java and 

MySQL and tested using the ADFA-LD 

dataset. The best results obtained were 

detection rate of 90.48% and false alarm rate of 

22.5% with learning time of about 30 seconds. 

To the best of our knowledge, the obtained 

detection rate is much higher than almost all 

compared systems and is very close to the 

highest result. Moreover, the proposed system 

provides the best combination of high detection 

rate and very small learning time. This 

provides high capability to detect zero-day 

attacks and also makes it flexible to cope with 

any environmental changes since it can learn 

quickly and incrementally without the need to 

rebuild the whole classifier from scratch. 

Nevertheless, there are still some limitations in 

the proposed HIDS that need to be considered 

as future work. The false alarm rate needs to be 

decreased by improving the extraction and the 

classification algorithms. Moreover, the 

abnormality threshold value has to be 

determined automatically.  
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نظام كشف التسمل المحسن بتتبع آثار استدعاءات الوظائف الأساسية في نظام 
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والتي تستيدف الأنظمة الحديثة،  ،امعروفة مسبق  اللكشف اليجمات الإلكترونية غير . المستخمص
وذلك باستخدام  ،تم اقتراح عدة أنظمة مبنية عمى أساس المضيف لمكشف عن المتسممين

ىذه الأنظمة المقترحة بكشف الانحياز . تقوم التي تم تجميعيا حديثا ADFA-LDمجموعة بيانات 
عن السموك الطبيعي لمنظام باستخدام تقنيات تعتمد عمى تتبع آثار استدعاءات الوظائف 

والتي تم تجميعيا في مجموعة البيانات  ،الأساسية في نظام التشغيل من قبل العمميات في الذاكرة
ADFA-LDيتمثل في انخفاض  ،دة جوانب. بشكل عام، يوجد في الأنظمة المقترحة قصور من ع

دقة كشف المتسممين، وارتفاع نسبة الخطأ فيما تم اكتشافو، والاستيلاك العالي جدا  لموارد 
مع فقدان المرونة الكافية للاستجابة  ،النظام، وطول مدة التعمم عمى السموك الطبيعي لمنظام

. ولمتغمب عمى جميع ىذه عمى التغيرات التي تطرأ عمى السموك الطبيعي لمنظام بشكل مستمر
م السريع لمسموك السمبيات وتحقيق أفضل مزيج من الدقة العالية، ونسبة الخطأ المنخفضة، والتعم

اقتراح نظامين لكشف المتسممين مبنية عمى أساس المضيف. النظام الأول  تم الطبيعي لمنظام،
قط من استدعاءات الوظائف ينتفع من خوارزمية مستحدثة لاستخراج السلاسل القصيرة والفريدة ف

وذلك لتكوين الممحة الخاصة بالسموك الطبيعي لمنظام. بعد ذلك،  ،الأساسية في نظام التشغيل
يتم استخدام خوارزمية مصاحبة لتصنيف سموك العمميات واكتشاف أي انحياز عن السموك 

ردد من آثار الطبيعي. النظام الآخر يقوم باستخراج خصائص فريدة مبنية عمى التكرار والت
وذلك لتمثيل السموك الطبيعي لمنظام. بعد  ،استدعاءات الوظائف الأساسية في نظام التشغيل

خاضعة للإشراف مثل الذلك، يتم استخدام تقنيات كشف الانحياز عن السموك الطبيعي وشبو 
support vector machines  وk-nearest neighbors   وk-furthest neighborsء . قمنا بإنشا

وذلك  ADFA-LDعمى مجموعة البيانات  بناء   ،نموذجين لممقترحين باستخدام لغة البرمجة جافا
لمقارنة أداء النظامين. النتائج التجريبية أظيرت أن النظام الأول قد تفوق عمى النظام الثاني. 

من  حديثامى جميع التقنيات المنشورة إلى حد عممنا، فإن ما توصمنا إليو من نتائج قد تفوق ع
 ناحية فترة التعمم عمى السموك الطبيعي لمنظام وكمية استيلاك الموارد. كما فاقت دقة الكشف في

وكانت الدقة شبو مساوية  ،بالمقارنة اا جميع الأنظمة المقترحة مؤخر  النظام المقترح من قبمنا تقريب  
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ظام كشف التسمل من لأفضل ما تم نشره حتى وقت كتابة الورقة العممية. وبشكل خاص، فإن ن
خلال كشف الانحياز عن السموك الطبيعي لمنظام، والمبني عمى خوارزمية استخراج السلاسل 
القصيرة والفريدة فقط من استدعاءات الوظائف الأساسية لنظام التشغيل قد جمع بين مزيج من 

نموذج الذي تم كارتفاع دقة كشف المتسممين وانخفاض فترة التعمم. لقد حقق ال ،عدة مزايا فضمى
عمى مع فترة تعمم  ٪2...ونسبة خطأ تساوي  ٪84.09تطويره نسبة من الدقة العالية تساوي 

من  ويمكّنما مزيج من المزايا ىذا الفي ثانية فقط. إن  04 االسموك الطبيعي تساوي تقريب  
واءم مرونة ليت اويجعل النظام ذ ،معروفة مسبقاالمعظم اليجمات الإلكترونية غير  اكتشاف

نظرا  لأنو قابل لأن يتعمم السموك الطبيعي الجديد بسرعة،  ،تعديلات في البيئة ةويتماشى مع أي
 .وبشكل تكاممي من دون الحاجة إلى بناء كامل خوارزمية التصنيف من الصفر

تعمم  ،اليجمات الإلكترونية الحديثة ،كشف الانحياز عن السموك الطبيعي :الكلمات المفتاحية
 .والتنبؤ، خوارزميات التصنيف، أنظمة كشف التسمل ،الآلة
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