
JKAU: Comp. IT. Sci., Vol. 9 No. 1, pp: 29 – 44 (1441 A.H. / 2020 A.D.)

Doi: 10.4197/Comp. 9-1.3

29

Programming Languages and Energy Consumption: A Survey

Eythar Alghamdi 1,2 and Ahad Alloqmani 1

1Computer Science Department, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, and 2 Computer Science Department, Faculty of Computing and

Information Technology, University of Bisha, Bisha, Saudi Arabia

ealghamdi0219@stu.kau.edu.sa

Abstract. Programming languages have a powerful role to develop and implement highly effective
programs and systems. Energy consumption is becoming a key criterion when choosing
programming languages instead of fast execution. Five papers and five popular programming
languages (Haskell, Java, C#, JavaScript, and PHP) were reviewed, to answer whether the fast
execution programs are also energy-efficient programs, or not, and if optimizing a program for one
of them that affects another one, negatively and positively with considerate the difference between
programming languages. The programming languages were classified into three categories to
compare between each language in the same category and compare languages in different categories.
From our study, the result was there is no winner, as no language exceeds the rest in all study cases.
It is clear that different programming languages classes, and even languages within the same class
have a completely different impact on energy consumption based on the used data type, the size of
the data, the used approach, and other reasons. Also, most energy-efficient languages are not always
the fastest.

Keywords: Energy Consumption, Haskell, Java, C#, JavaScript, PHP.

1. Introduction

Programming languages have powerful
mechanisms and methods to develop and
implement highly efficient programs and
systems. Formerly, such mechanisms and
methods aim to produce fast programs by
reducing run time; therefore, the less time they
take to run, the better they perform. Nowadays,
a lot of things have changed in software
programming and engineering. Instead of fast
execution, software energy consumption is
becoming a key concern for everyone related to
the computer like computer manufacturers and
even regular computer users. That is especially
with the demands and the growing need to
preserve the environment and the emergence of

the concept of green computing that aims to use
computers and their resources in the way
making them eco-friendly as a part of
environmentally responsible [1].

The main question that frequently arises
in the energy consumption field is whether the
fast execution programs are also energy-
efficient programs, or not, and if optimizing a
program for one of them that affects another
one, negatively and positively.

Regarding some research, energy
consumption depends on execution time and
many other factories, such as API calls, code
obfuscation, constructs for concurrent

30 Eythar Alghamdi and Ahad Alloqmani

execution, object-oriented code refactorings,
and data types [1][2].

Nevertheless, it’s a complicated task. The
reasons for that are programs written in
different languages that implement the same
computing problem may use different
algorithms, and the performance of a language
is influenced by many factors like a virtual
machine, the quality of its compiler, available
libraries, garbage collectors, etc. Indeed, as
theoretical and practical studies proved, a
software program may become faster by
improving its source code, but also by just
optimizing its libraries and/or its compiler [3].

In this paper, five papers and five popular
programming languages (Haskell, Java, C#,
JavaScript, and PHP) is reviewing, in order to
answer the previous questions, considering the
difference between programming languages by
classifying them into three categories to
compare between each language in the same
category and compare between languages in
different categories.

The rest of the paper is organized as
follows: Section 2 describes the classification
used in this paper. Section 3 presents the
analysis and discussion; Section 4 shows the
results. Finally, Section 5 concludes our work.

2. Programming Languages Classification

Programming languages can be divided
into different classes depending on different
features. In this paper, the programming
languages were split into three classes:
functional languages, object-oriented
languages and scripting languages.

This classification is beneficial to
understand the final results of the experiments
since each language class has its own features
and methods to write a program.

2.1 Functional Languages
Functional programming was described

as the programming style that the primary

method of computation is the application of
functions to arguments [3-4]. Haskell is a purely
functional programming language, named after
the American mathematician and logician
Haskell Curry and it was initiated by an
international committee of programming
language researchers [4]. In 1987, Philip Wadler
and others developed the concept of type
classes to support overloading and handle
effects, which are the leading unconventional
features of Haskell in the 1990s [4]. In 2010, a
revised and updated version of the Haskell
Report was published. Since then, the language
has continued to evolve [4].

2.2 Object-Oriented Programming Language
(OOP)

OOP was defined as the language that
provides support for three main language
features: inheritance, abstract data types, and
dynamic binding of method calls to methods [5].

Java and C# were designed to support
object-oriented programming and do not
support other programming paradigms; they
still employ some of the basic imperative
structures and have the appearance of the older
imperative languages [5]. The OOP approach
can demean performance and raise the power
consumption of software (as compared to the
classical procedure programming) because of
its additional abstraction and encapsulation
layers and mechanisms [6].

2.3 Scripting Language

Scripting languages were used to insert a
list of commands into a file for interpretation,
and they started as a small series of commands
interpreted as calls to machine subprograms
executing utility functions, such as file
management and quick retrieval of files. Then,
variables were added, declarations of control
flow, features, and numerous other
functionalities, resulting in a full programming
language [5].

Programming Languages and Energy Consumption: A Survey 31

JavaScript has undergone significant
development through the introduction of many
new features and capabilities. In the late 1990s,
a language specification was developed for
JavaScript. However, a JavaScript interpreter
may be used in many different applications; it
is embedded in Web browsers for its most
common use [5]. JavaScript code is embedded in
the HTML documents and interpreted when the
browser displays the documents. JavaScript's
primary uses in Web programming are
validating input form data and creating dynamic
HTML documents [5].

PHP is an HTML-embedded server-side
scripting language specifically designed for web
applications. PHP code is translated on the Web
Server when a browser has submitted an HTML
document in which it is inserted [5]. PHP code
generates an output HTML code, which replaces
the PHP code in the HTML document. A Web
browser thus never sees the PHP code [5].

3. Analysis and Discussion

Five papers that are relevant directly and
indirectly to the subject of the study were
analyzed. In this section, these papers were
discussed in terms of the methodologies used,
the languages were studied, and results.

3.1 Functional Languages

For functional languages, two papers
about energy consumption in the Haskell
language were studied and compared their
results [2][3].

Lima, L. G. et al., 2016 [2], attempted to
highlight the energy attitude in some programs
that are written in a purely functional language,
like Haskell [2]. They had developed two
existing performance analysis tools to become
aware of energy behavior, the Criterion
benchmarking library and the profiler that
comes with the Glasgow Haskell Compiler [2].
They made two kinds of comparison: compare

energy consumption in different data structures
and compare concurrent constructs [2].

In the first comparison, using Edison, a
library provides multiple implementations for
several families. They analysed the efficiency
and energy behaviour of several test operations
across 15 separate implementations of the three
different types of data structures as shown in
Table 1 [2].

Table 1. The functions that Edison provides and used by
researchers to implement the operations [2].

 Sequence
s

Sets Heaps Associative
Collections

add lcons,
rcons

insert insert insert

addAll append union union union
clear null, ltail difference minView

, delete
difference

contains null, filter member member member
containsA
ll

foldr,
map

subset null,
membe,
minView

submap

iterator map foldr fold map
remove null, ltail deleteMin deleteMi

n
null,
deleteMin

removeAll filter difference minView
, delete

difference

retainAll filter intersectio
n

filter,
member

Intersection-
With

toArray toList foldr fold foldrWithKe
y

They analyzed the results and found that
following [2]:

 For Sequences: The time of execution has
a strong influence on energy consumption. The
measured proportions for all processes and
applications differ at most 1.9 percent.

 For Associative Collections: Energy
consumption was equal to the time of operation.
The AssocList was less effective for almost all.
StandardMap costs between 40 percent to 85
percent more time and energy than AssocList.
The amount of energy consumed was 1%
higher than the percentage of time spent on the
add operation only.

32 Eythar Alghamdi and Ahad Alloqmani

 For Collections:

o Sets: Further time execution often
requires further energy consumption for each
combination of implementation and
benchmarking. The UnbalancedSet is less
effective than the StandardSet for all test
operations but Contains. Comparing the time
and energy usage percentages have shown that
-for all benchmark operations- the difference
between the proportion of time and energy
consumption is always less than 1.49 percent.

o Heaps: Energy consumption is equal to
the time of operation. Overall, the
LazyPairingHeap was found to be the most
effective in all test operations except for Add.
The SkewHeap and SplayHeap were the least
efficient in 5 operations for each. The
proportions of execution time and energy
consumption for any operation in any Heaps
operation are at most 2.16 percent different.

In the second comparison, researchers
aimed at determining the energy efficiency of
Haskell's concurrent programming constructs
by analyzing the concurrent programming
primitives functions such as forkIO, forkOn,
and forkOS [2].

They tested three separate thread control
structures and three data sharing primitives
utilizing nine benchmarks and multiple
experimental configurations and found that [2]:

 Small changes lead to significant
savings: One of the key findings of this study is
that easy refactoring, such as flipping between
thread control systems, can have a significant
impact on energy consumption. For example,
using forkOn instead of forkOS with TVar can
save between 25% and 57% of energy.

 Faster is not always greener: For 6 out
of 9 benchmarks, in at least two variants of
each, there are times when faster execution time
leads to more energy consumption.

 There is no overall winner: Generally, no
thread management construct or data
sharing, or a mixture of both always gives
the best result.

Therefore, we can conclude that the
connection between energy consumption and
efficiency is not always evident. In general,
high performance leads to low energy
consumption, particularly in sequential
benchmarks. Even so, when considering
concurrency, we didn't find a definite
relationship.

Couto, M, et al., 2017 [3], presented the
research of the runtime, memory, and energy
consumption of twenty-seven pretty-known
software languages; one of them was Haskell
[3]. The primary motivation and main focus of
this study are to understand energy efficiency
across the programming languages [3].

They used the Computer Language
Benchmarks Game (CLBG) as a framework for
execution, testing and comparison implemented
solutions to a set of well-known programming
problems such as Hashtable update and k-
nucleotide strings, Allocate, traverse and
deallocate many binary trees. All programming
problems that were implemented were shown in
Table 2. They then collected the fastest version
of the code for each of the benchmark issues [3].

The CLBG also provides calculated
knowledge on both runtime and energy
consumption, but for precise energy
projections, they used the RAPL tool for
measuring the energy consumption [3]. Each
benchmark solution has been implemented and
measured ten times, in order to obtain ten
energy consumption and run time samples, to
minimize the effect of cold start, caching
effects, and avoid outliers [3].

As a result, they identified different
energy consumption behaviors and execution
times in several languages and tests. In the

Programming Languages and Energy Consumption: A Survey 33

binary-tree benchmark, Haskell consumed
270.15J to execute the solutions. In the
fannkuch-redux benchmark, it consumed
433.68J to execute the solutions. In the fasta
benchmark, it consumed 205.52J to execute the
solutions. But when comparing the energy and
time, we found that Haskell is one of four
languages that preserve the same energy
consumption and execution time [3].

Table 2. CLBG framework [3].

Benchmark Description Input

n-body Double precision N-body
simulation

50M

fannkuch-
redux

Indexed access to a tiny integer
sequence

12

spectral-
norm

Eigenvalue using the power
method

5,500

mandelbrot Generate Mandelbrot set portable
bitmap file

16,000

pidigits Streaming arbitrary precision
arithmetic

10,000

regex-redux Match DNA 8mers and substitute
magic patterns

fasta
output

fasta Generate and write random DNA
sequences

25M

k-nucleotide Hashtable update and k-nucleotide
strings

fasta
output

reverse-
complement

Read DNA sequences, write their
reverse-complement

fasta
output

binary-trees Allocate, traverse and deallocate
many binary trees

21

chameneos-
redux

Symmetrical thread rendezvous
requests

6M

meteor-
contest

Search for solutions to shape
packing puzzle

2,098

thread-ring Switch from thread to thread
passing one token

50M

Comparing with other languages, we
grouped them by the paradigms; we found that
the imperative languages averagely took less
energy consumption, then object-oriented
languages, then Haskell and the rest of the
functional languages, and nothing worse than

functional languages except scripting
languages.

Depending on that, we can say that
although Haskell maintains the same energy
consumption and time rank doesn’t mean that
energy is affected by the time execution. But
there are many scenarios where a software
engineer has to choose Haskell (or not) to
develop an algorithm depending on functional
or non-functional requirements. Still, in
general, Haskell is not the best functional
language if we consider (energy and time
execution), or (energy and memory), or
(energy, time, and memory), but it is still one of
the best. Table 3 presents the three multi-
objective rankings. For each category, each line
represents a set that includes the languages
identical to each other for the underlying goals
[3].

Table 3. The optimal solutions for various group of
objectives [3].

Energy &
Time

Energy & Memory Energy & Time
& Memory

C C • Pascal C • Pascal • Go

Rust Rust • C++ •
Fortran • Go

Rust • C++ •
Fortran

C++ Ada Ada

Ada Java • Chapel • Lisp Java • Chapel •
Lisp • OCaml

Java OCaml • Swift •
Haskell

Swift • Haskell •
C#

Pascal •
Chapel

C# • PHP Dart • F# •
Racket • Hack •
PHP

Lisp • OCaml
• Go

Dart • F# • Racket •
Hack • Python

JavaScript • Ruby
• Python

Fortran •
Haskell • C#

JavaScript • Ruby TypeScript •
Erlang

Swift TypeScript Lua • JRuby •
Perl

Dart • F# Erlang • Lua • Perl

JavaScript JRuby -

Racket - -

TypeScript •
Hack

- -

PHP - -

34 Eythar Alghamdi and Ahad Alloqmani

3.2 Object-Oriented Programming
Languages

For Object-oriented Programming
languages, three papers about energy
consumption in Java and C# languages were
studied and compared their results [3][7][8].

Hasan, S. et al., 2016 [7], profiles were
provided for the Java Collections Framework,
Apache Commons Collections, and Trove [7].
They collected energy usage data using the
GreenMiner framework to measure actual
energy consumed in Joule (J). They created
energy consumption profiles for commonly
used API methods for variables from three
types of collections data types: List, Map and
Set implementations, and recorded how this
varies with input sizes [7]. The collections
classes that studied are shown in Table 4.

Table 4. Profiled Collections Classes [7].

Library List Map Set
Java
Collections
Framework
(JCF)

ArrayList
 LinkedList

HashMap
TreeMap

HashSet
TreeSet
LinkedHashSet

Apache
Collections
Framework
(ACC)

TreeList

HashedMap
LinkedMap

ListOrderedSet
MapBackedSet

Trove TIntArrayList
TIntLinkedList

TIntIntHashMap

TIntHashSet

They have discussed these six research
questions [7]:

1. What is the most energy-efficient List
implementation for insertions, iteration, and
random access?

2. What is the most energy-efficient Map
implementation for insertions, iteration, and
random query?

3. What is the most energy-efficient Set
implementation for insertions, iteration, and
random query?

4. How the input size affects the energy
consumption of the collections?

5. How does storing different elements
affect the energy consumption of the
collections?

6. How can we use the profiles to choose
the most energy efficient implementation of
List, Map, and Set?

1, 2 and 3 compared to the energy profiles
that have been created for the implementation
of List, Map and Set; 4 and 5 relate to the
measurement of the impact of sizes and types of
input data; 6 on the use of the results as a guide
for developers [7].

The answers to research questions as
follows [7]:

As for the first question: JCF’s
LinkedList consumes the least energy in
insertions at the beginning, followed by Trove’s
LinkedList.

Trove’s ArrayList is the most energy-
efficient for insertions in the middle and at the
end, followed by JCF’s ArrayList. Energy does
not differ when it expands. for iteration and
random access, there is no much difference
between them.

As for the second question: For
insertions and random queries, HashMap is the
most energy-efficient. ACC’s LinkedMap is a
little better on insertions than JCF’s
LinkedHashMap in case the order of insertion
must be kept. TreeMap is bad energy
consumption and must be averted unless
explicitly needed. For iteration is the same for
almost all implementations.

As for the third question: For insertions
and random queries, HashSet is the most
energy-efficient. For iterations, ACC’s
ListOrderedSet is the most energy-efficient Set.
TreeSet is bad energy consumption and must be
averted unless explicitly needed.

As for the fourth question: For input
sizes from 1 to 500, all alternative

Programming Languages and Energy Consumption: A Survey 35

implementations of List, Map, and Set perform
equally. It does not display a significant
difference in energy consumption. But, when
we deal with more elements, the differences
become large and significant.

As for the fifth question: Inserting small
object types in a list is the most energy-efficient
than operations on primitive data types in lists
that consume more energy.

As for the sixth question: Generally, for
list implementation, TIntArrayList is the most
energy-efficient followed by ArrayList. For
map implementation, HashMap is the best. For
Set implementation, TIntHashSet is the most
energy-efficient with HashSet as a close
second.

Figure 1 shows the difference in energy
efficiency between the implementation of List,
Map, and Set. Where each color refers to the
rank: Green determines the most efficient
implementation, while the red color indicates
the worst among alternatives. On each table, the
row with the greenest is the best [7].

In the study of Couto, M. et al., 2017 [3],
C# and Java were included. In the binary-tree
benchmark, Java consumed 111.84J to execute
the solutions, and C# consumed 189.74J. In the
fannkuch-redux benchmark, Java consumed
311.38J, and C# consumed 399.33J. Java was
achieving the fifth-best value by consumed
35.86J, and C# consumed 45.35J [3].

Considering the different combinations of
objectives, we found, as shown in Table 3, that
Java is the second-best object-oriented
language in all cases, then C#.

Chandra, T. B. et al., 2018 [8], the authors
studied different languages including C# and
Java. They implemented different sorting
algorithms which are bubble sort, insertion sort,
selection sort, and quick sort on these languages
to compare between them for finding the
language that is the most energy-efficient [8].

They used “Joulemeter” as a simulator
tool to simulate the energy consumption of
different sorting algorithms implemented in
these languages [8]. The comparing was on both
integer and double data sets with sixty thousand
elements [8].

Figures 2 and 3 demonstrate the
comparison results. The study calculated the
values based on power consumption in watt per
second [8].

Based on the results, the study found that
Java is the most energy-efficient programming
language, while C# consumes more power than
java. Also, sorting the data elements of type
double consumes more power than of the data
elements of type integer. As well the energy
consumption depends on the selection of
sorting algorithms [8].

3.3 Scripting Languages

For scripting languages, two papers about
energy consumption in PHP and JavaScript
were studied and compared their results [3][9].

Kurtz, K. et al., 2017 [9], explored the
effect of applying diverse web-based approaches
within the execution time and energy
consumption in bubble sort application [9]. They
observed time and energy in PHP, JavaScript,
and a Node.js implementation, then comparing
the result against a java implementation. In all
experiments, the array is initialized in the worst
case and reiterates them thirty times for the
results of statistical validity [9].

They compared three case studies: the
efficiency of PHP against Java, the efficiency
of JavaScript, and Node.js against Java, and a
comprehensive comparison of the four
approaches that are analyzed [9].

In the first case study, when an array
size between 100 and 1,000, Java achieves
better results. While when an array size
between 10,000 and 100,000, PHP achieves a
reduction in energy consumption around 15%

36 Eythar Alghamdi and Ahad Alloqmani

to 83%. Table 5 summarizes the energy
consumption results for native implementation
and PHP implementation [9]. Figure 4 shows the
relation between array size and energy
consumption in the evaluated implementations.

Table 5. Comparison between native and PHP in terms of
energy [9].

Size Implem. Energy Consumption
(mJ)

Std

100 Native
PHP

8.17
146.8

2.78
62.30

1,000 Native
PHP

43.37
206.93

18.44
60.70

10,000 Native
PHP

2,026.67
1,730

496.84
346.56

100,000 Native
PHP

68,556.67
11,613.33

1,593.02
961.58

In the second case study, Java presents
the lowest consumption when an array size is
between 100 and 1,000. While at an array size
between 10,000 and 100,000, Node.js achieves
improvements from 24% to 93% against
JavaScript [9]. Table 6 summarizes the energy
consumption results. Figure 5 shows the
relation between array size and energy
consumption in the evaluated implementations.

Table 6. Comparison between native, JavaScript, and
Node.js [9].

Size Implem. Energy Consumption
(mJ)

Std

100 Native
JavaScript
Node.js

8.17
751.47
724.3

2.78
167.83
143.33

1,000 Native
JavaScript
Node.js

43.37
789.97
770.73

18.44
215.32
189.18

10,000 Native
JavaScript
Node.js

2,026.67
1,523.17
1,155.57

496.84
345.44
297.68

100,000 Native
JavaScript
Node.js

68,556.67
18,810
1,361.87

1,593.02
119.58
340.21

In the overall comparison, when an
array size between 100 and 1,000, Java
achieves the best result, and Javascript and
Node.js achieve the worst outcome. While
when an array size is between 10,000 and
100,000, Node.js produces the best result, and
Java achieves the worst result.

Therefore, we found that the efficiency of
approaches is more affected by the array size.
On the other side, the Node.js shows less
affected by the array size; then, it is the best
choice for the large array size regarding energy
consumption and execution time. Figure 6
shows the relation between array size and
energy consumption [9].

In Couto, M. et al., 2017 [3] study, PHP,
and JavaScript were included. In the binary-tree
benchmark, JavaScript consumed 312.14J to
execute the solutions, PHP consumed
1,397.51J. In the fannkuch-redux benchmark,
JavaScript consumed 413.90J, PHP consumed
5.731.88J. In the fasta benchmark, JavaScript
consumed 64.84J, PHP consumed 430.73J. But
in the regex-redux benchmark, which
manipulates strings using regular expressions,
PHP and JavaScript seem to be an energy-
efficient choice. However, they tend to be not
very energy efficient in other scenarios. Thus,
clear to us that a faster language is not always
the most energy-efficient [3].

Considering the different combinations of
objectives, we found as shown in Table 3 that
PHP is the best scripting language when we
look for less energy consumption and less
memory loading. Still, JavaScript is the best
scripting language when we look for less
energy consumption and less time execution,
while they are almost the same when we look
for less energy consumption, less time
execution, and less memory loading [3].

4. Results

Comparison between four studies was
conducted in terms of data type, elements
numbers, the problem that was solved,
experiment repetition, programming languages,
and the best and worst cases in each language.
Table 7 shows a summary of that comparison.
It's clear that every language has best-case and
worst-case, which are depending on data type,
element number, or problem that was solved.

Programming Languages and Energy Consumption: A Survey 37

Then, the result cannot be generalized, as it is
limited to the cases studied, and changing any
criterion will, undoubtedly, change the result.

Table 8 shows the programming language
order depending on the study of Couto, M, et
al., 2017 [3], based on different objectives like if
a programmer considers energy & time, energy

& memory, or energy & time & memory.
Although, the study of Couto, M, et al., 2017 [3]
ordered the programming languages based on
different objectives [3]. However, we cannot
generalize the result in every case; it's only for
operations that are provided by the CLBG
framework and for the fastest version of the
code for each of the benchmark issues.

Fig. 1. Energy-efficient difference between List, Map and, Set implementation [7].

38 Eythar Alghamdi and Ahad Alloqmani

Fig. 2. Average power consumed for integer data set (W/s) [8].

Fig. 3. Average power consumed for double data set (W/s) [8].

Programming Languages and Energy Consumption: A Survey 39

a) Arrays of 100 and 1,000 elements.

b) Arrays of 10,000 and 100,000 elements.

Fig. 4. Native vs. PHP: Energy Consumption Results [9].

40 Eythar Alghamdi and Ahad Alloqmani

a) Arrays of 100 and 1,000 elements.

b) Arrays of 10,000 and 100,000 elements.

Fig. 5. Native, JavaScript, and Node.js energy consumption results [9].

Programming Languages and Energy Consumption: A Survey 41

Fig. 6. The relation between array size and energy consumption [9].

Table 7. Summary comparison between the four studies.

Study Data
Type

Elements No. Problem Experiment
Repetition

PL Best
Case

Worst Case

[2]

Sequence,
Collection,
Associative
Collection.

-

Edison

-

Haskell

high-
performance

process.

low-
performance

process.

[7]

List, Map, Set.

from 1 to
5000

- Java Collections
Framework (JCF).
- Apache Collections
Framework (ACC).
- Trove.

20 times

Java

- List:
TIntArrayList
- Map:
HashMap.
- Set:
TIntHashSet.

- List: TreeList.
- Map: TreeMap.
- Set: TreeSet.

[8]

Integer and
double array.

60,000

Sorting

4 times

Java

- Integer data set:
Quick Sort.
- Double data set:
Quick Sort.

- Integer data set:
Bubble Sort.
- Double data set:
Bubble Sort.

C#

- Integer data set:
Quick Sort.
- Double data set:
Quick Sort.

- Integer data set:
Selection Sort.
- Double data set:
Bubble Sort.

[9]

Array

from 100 to
100,000

Bubble Sort

30 times

Java 100 - 1,000 array
size

10,000 - 100,000
array size

JS 10,000 - 100,000
array size

100 - 1,000 array
size

PHP 10,000 - 100,000
array size

100 - 1,000 array
size

42 Eythar Alghamdi and Ahad Alloqmani

Table 8. The programming languages order based on the
different objectives depending on [3] study.

Order

Objectives

1st

2nd

3rd

4th

Energy & Time Java Haskell
C#

JS PHP

Energy &
Memory

Java Haskell C#
PHP

JS

Energy & Time
& Memory

Java Haskell
C#

PHP JS

Obviously, there is no winner, as no
language exceeds the rest in all study cases. It
is clear that different programming languages
classes and even languages within the same
class have a completely different impact on
energy consumption based on the used data
type, the size of the data, the used approach, and
other reasons. Also, we observed that the most
energy-efficient languages are not always the
fastest.

We believe these results are useful where
programmers have to choose a specific
programming language to implement their
software. For example, if the programmer
wants to develop software for wearable devices,
it is crucial to select a language with low energy
consumption to help save battery. But if he is
going to build software for user-interactive, it is
important to choose a language that has less
time execution.

4. Conclusion

This paper reviewed five papers and five
popular programming languages (Haskell,
Java, C#, JavaScript, and PHP) in order to
answer whether the fast execution programs are
also energy-efficient programs, or not, and if
optimizing a program for one of them that
affects another one, negatively and positively,
with considerate the difference between
programming languages by classifying them
into three categories to compare between each

language in the same category and compare
between languages in different categories.

The result was that different
programming languages classes and even
languages within the same class have a
completely different impact on energy
consumption based on the used data type, the
size of the data, the used approach, and other
reasons. Also, most energy-efficient languages
are not always the fastest, and absolutely, these
results are useful where programmers have to
choose a programming language to implement
their software according to functional and non-
functional requirements.

Acknowledgments

The authors would like to express our
special thanks to Dr. Sanaa Sharaf (King
Abdulaziz University), who gave us the golden
opportunity to work in this research area.

References

[1] Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J.,
Fernandes, J. P., & Saraiva, J. (2017, October). Energy
efficiency across programming languages: How do
energy, time, and memory related?. In Proceedings of the
10th ACM SIGPLAN International Conference on
Software Language Engineering (pp. 256-267). ACM.

[2] Lima, L. G., Soares-Neto, F., Lieuthier, P., Castor, F.,
Melfe, G., & Fernandes, J. P. (2016, March). Haskell in
green land: Analyzing the energy behavior of a purely
functional language. In 2016 IEEE 23rd international
conference on Software Analysis, Evolution, and
Reengineering (SANER) (Vol. 1, pp. 517-528). IEEE.

[3] Couto, M., Pereira, R., Ribeiro, F., Rua, R., & Saraiva,
J. (2017, September). Towards a Green Ranking for
Programming Languages. In Proceedings of the 21st
Brazilian Symposium on Programming Languages (p. 7).
ACM.

[4] Hutton, G. (2016). Programming in Haskell. Cambridge
University Press.

[5] Sebesta, R. W. (2016). Concepts of programming
languages. Pearson.

[6] Maleki, S., Fu, C., Banotra, A., & Zong, Z. (2017).
Understanding the impact of object-oriented programming
and design patterns on energy efficiency. 2017 Eighth
International Green and Sustainable Computing
Conference (IGSC).

Programming Languages and Energy Consumption: A Survey 43

[7] Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B.,
& Hindle, A. (2016). Energy profiles of Java collections
classes. Proceedings of the 38th International Conference
on Software Engineering - ICSE 16.

[8] Chandra, T. B., Verma, P., & Dwivedi, A. K. (2018).
Impact of Programming Languages on Energy
Consumption for Sorting Algorithms. Advances in

Intelligent Systems and Computing Software Engineering,
93–101. doi: 10.1007/978-981-10-8848-3_9

[9] Kurtz, K., Noguez, M., Zanini, F., Ferreira, P. R., &
Brisolara, L. (2017, November). Comparing Performance
and Energy Consumption of Android Applications: Native
Versus Web Approaches. In 2017 VII Brazilian
Symposium on Computing Systems Engineering (SBESC)
(pp. 147-154). IEEE.

44 Eythar Alghamdi and Ahad Alloqmani

 لغات الʛʰمʳة واسʱهلاك الʢاقة: دراسة اسʱقʸائॽة
ȏʗار الغامʰو 2،1إی ʗانيعهʸ1اللق

، قʦʶ علʨم الʴاسʖ 2وقʦʶ علʨم الʴاسʖ، ؗلॽة الʴاسॼات وتقॽʻة الʺعلʨمات، جامعة الʺلʥ عʙʰ العʜȄʜ، جʙة، 1
 كلॽة الʴاسॼات وتقॽʻة الʺعلʨمات، جامعة بʷॽة، بʷॽة، الʺʺلؔة العॽȃʛة الʶعʨدǽة

emalghamdi@ub.edu.sa

ʟلʵʱʶʺال . ʚʽفʻوت ʛȄʨʢة دور هام في تʳمʛʰهلاك للغات الʱح اسॼة فعالة. أصʺʤامج وأنʛب
الʢاقة مॽɻارًا رئॽًʶॽا عʙʻ اخॽʱار لغات الʛʰمʳة بʙلاً مʧ سʛعة الʻʱفʚʽ. في هʚه الʙراسة تʺʗ مʛاجعة

هي: هاسȞل وجافا وسي شارب ،خʺʝ أوراق ॽʲʴǼة حʨل خʺʝ لغات بʛمʳة شائعة الاسʙʵʱام
ʗة عʺا إذا ؗانǼللإجا ʥبي؛ وذل ʞي اتȃو ʗʰȄʛȞام وجافا سʛا ب ً́ ǽع هي أȄʛʶال ʚʽفʻʱامج الʛج ب

مʨفʛة للʢاقة أم لا، وȂذا ؗان تʧʽʶʴ أحʙها یʕثʛ على الآخȞʷǼ ʛل سلʰي أو إʳǽابي، مع مʛاعاة
الفʛوق بʧʽ لغات الʛʰمʳة. تʦ تʅॽʻʸ لغات الʛʰمʳة إلى ثلاث فʯات للʺقارنة بʧʽ اللغات في

لغة على ةʳॽʱة دراسʻʱا أثʗʱʰ أن لا تفʹʽل لأǽنفʝ الفʯة والʺقارنة بʧʽ اللغات مʧ فʯات مʱʵلفة. ن
خȐʛ مʧ ناحॽة تʨفʛʽ اسʱهلاك الʢاقة، حʘʽ لا تʨجʙ لغة تفʨق الॽʁॼة في جʺॽع حالات الʙراسة الأ

ا معʦʤ اللغات الʺʨفʛة للʢاقة لʗʶॽ دائʺا الأسʛع. Ǽالʱالي مʧ الʨاضح أن فʯات لغات الʛʰمʳة ً́ ǽوأ
لفʯة لها تأثʛʽ مʱʵلف تʺامًا على اسʱهلاك الʢاقة اسʻʱادًا إلى الʺʱʵلفة، وحʱى اللغات داخل نفʝ ا

 .نʨع الॽʰانات وحʳʺها والȄʛʢقة الʺʙʵʱʶمة في الʛʰمʳة وغʛʽها مʧ الأسॼاب

 .اسʱهلاك الʢاقة، هاسȞل، جافا، سي شارب، جافا سʗʰȄʛȞ، بي اتʞ بي :الكلمات المفتاحية

