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Abstract. This paper deals with an emergent variant of the classical problem of computing the
probability of the union of n events, or equivalently the expectation of the disjunction (ORing) of n
indicator variables for these events, i.e., the probability of this disjunction being equal to one. The
variant considered herein deals with multi-valued variables, in which the required probability stands
for the reliability of a multi-state delivery network (MSDN), whose system success is a two-valued
function expressed in terms of multi-valued component successes. The paper discusses four
approaches for handling the afore-mentioned problem in terms of a standard MSDN, whose success
is known in minimal form as the disjunction of its prime implicants, which are the minimal paths of
the pertinent network. The paper briefly outlines and discusses two standard solutions via the
utilization of the multi-state inclusion-exclusion (MS-IE) principle, and via the construction of a
multi-state probability-ready expression (MS-PRE). We successfully extrapolate the PRE concept
from the two-valued logical domain to the multi-valued logical domain, and employ it for a direct
transformation of a random logical expression, on a one-to-one basis, to its statistical expectation
form, simply by replacing all logic variables by their statistical expectations, and also substituting
arithmetic multiplication and addition for their logical counterparts (ANDing and ORing). The main
contribution of the paper is to provide two systematic and more efficient procedures for handling the
required problem. The first procedure uses the multi-state Boole-Shannon expansion, while the
second procedure applies the MS-IE principle to fewer (factored or composite) paths that are set (at
minimal cost) to PRE form. The four approaches discussed are illustrated with a detailed symbolic
example of a real-case study, and each of them produces a more precise version of the same
numerical value that was obtained earlier by the method of recursive sum of disjoint products
(RSDP). The paper is a part of an on-going activity that strives to provide a pedagogical treatment
of multi-state reliability problems, and to establish a clear and insightful interrelationship between
the two-state modeling and the multi-state one by stressing that multi-valued concepts are natural

and simple extensions of two-valued ones.
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1. Introduction

This paper deals with a fundamental problem of
multi-state reliability, which pertains to the
computation of the expectation of the logical
expression of a multi-state disjunctive normal

form  (DNF). Currently, the  most
computationally efficient method for handling
this problem is an automated implementation of
the method of the recursive sum of disjoint
products (RSDP) 3. We present a tutorial
discussion of four approaches (in descending
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order of complexity) for solving this problem.
These approaches are based on (a) the multi-
state inclusion-exclusion (MS-IE) principle, (b)
the concept of a multi-state probability-ready
expression (MS-PRE), (c) the multi-state
Boole-Shannon (MS-BS) expansion, and (d) a
novel approach that combines factoring, MS-IE
and MS-PRE. Our third approach (occasionally
associated with the second) captures the
essence of the RSDP method.

This paper is a part of an on-going
activity that strives to provide a pedagogical
treatment of multi-state reliability problems.
We aspire to establish a clear and insightful
interrelationship ~ between the two-state
modeling and the multi-state one by stressing
that multi-valued concepts are natural and
simple extensions of two-valued ones.
Moreover, we hope to extend the concept of the
sum of disjoint products (SDP) in the multi-
state domain to the more encompassing one of
a probability-ready expression (PRE). Finally,
we need to provide a useful liaison among MS-
IE, MS-PRE, and MS-BS.

The organization of the remainder of this
paper is as follows. Section 2 presents
important pertinent assumptions and notation.
It further introduces a running example of a
multi-state delivery network (MSDN) with
multiple suppliers, borrowed from Lin et al. [/,
Section 3 introduces the multi-state inclusion-
exclusion (MS-IE) principle, while Section 4
extends the concept of a multi-state probability-
ready expression (MS-PRE) from the binary to

the multi-state case. The two sections outline
the application of their pertinent methods to the
running example. Section 5 presents the multi-
state Boole-Shannon, and demonstrate it in
terms of the running example. Section 7 applies
the multi-state inclusion-exclusion (MS-IE)
principle to the same example using fewer
(factored or composite) paths that are set (at
minimal cost) to PRE form. Section 7 discusses
the results obtained, while Section 8 concludes
the paper.

2. Assumptions, Notation and Specification of
a Running Example

2.1 Assumptions

e The model considered is one of a system
with binary output and multistate components,

specified by the structure or success function
S(X) (4]

$:{0,1,-+,my} X {0,1, -, m,} X ...
X {0' 1; o ,mn} - {Ol 1} (1)

e The system is generally non-
homogeneous, i.e., the number of system states
(two) and the numbers of component states
(my +1),(m, +1),--, (M, + 1) might differ.
When these numbers have a common value, the
system reduces to a homogeneous one.

e The system is a non-repairable one with
statistically independent non-identical
(heterogeneous) components.

The system is a coherent one enjoying
the properties of causality, monotonicity, and
component relevancy 41,

2.2 Notation
Symbol Description
Xy A multivalued input variable representing component k (1 < k < n), where X;, € {0, 1, ..., m;},

and my, = 1 is the highest value of Xj.

Xi{j}

A binary variable representing instant j of X
Xk{]} = {Xk = ]}:
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e, Xp{j} = 1if X = j and X {j} = 0 if X;, # j. The instances X, {j} for { 0 < j < m;} form
an orthonormal set, namely, for {1 < k < n}

V;‘n=k0 Xk{]} = 15 (23)

X (1) Xie(2) = 0 for j; # j; . (2b)

Orthonormality is very useful in constructing inverses or complements. The complement of the

union of certain instances is the union of the complementary instances. In particular, the
complement of X, {= j} = X, {j,j + 1, ..., my } is X {< j} = X, {0, 1, ...,j — 1}.

Xe{=j3

An upper value of X, {0 <j <my}:

The value X} {= 0} is identically 1. The set X;.{= j} for {1 < j < m,} is neither independent nor
disjoint, and hence it is difficult to be handled mathematically, but it is very convenient for
translating the verbal or map/tabular description of a coherent component into a mathematical
form when viewing component success at level j. The complement of X, {= j} is

X A< }=X{(0,1,...i 1} =X {0 VX {1} .. VX i -1} =X {k < (- D} (@

X {=Jj}

A lower value of X, {0 <j < my}:

X {<j}=X101,..,j} = V{=o X {i} = X {0} v X, {1} ... v X, . {j — 1} vV X, (U} Q)
The value X, {< m;} is identically 1. The set X {< j} for {0 <j < (my — 1)} is neither
independent nor disjoint, and hence it is not convenient for mathematical manipulation though it
is suitable for expressing component failure at level (j + 1). Instances, upper values and lower
values are related by

X=X X{<(+D}=X23 X0+ D} =X 3 X0 (-D)
= X (<} X< G - D). ©)

A binary output variable representing the system, where S € {0, 1}. The function S(X) is usually
called the system success or the structure function. Its complement S(X) is called system failure,
and is also a binary variable. The logical sum and arithmetic sum of success and failure are both
equal to 1, namely

(SXVSX) =X +5(X)) =1 ™)

2.3 Specifications for a Running Example

Lin et al. ! studied a specific multi-state
delivery network (MSDN) with multiple
suppliers, one market, multiple transfer centers
and eight branches. They derived an expression
of system success for specific data of delivery
costs, probability distributions of all branches,
available capacities, suppliers’ production
capacities, deterioration rate vector for the
minimal paths obtained, demand, and budget.
They presented the final multi-state success in

their Table 2, which is expressed below, with an
appropriate translation of notation

S =X3{= 3} Xs{= 3} Xe{= 3} VX5 {= 3} X, (=
3}V X,{= 3} X{= 3} Xa{= 3}V X, (= 2} X {>
2} X, {= 2} X,{= 3} Xs{= 2} V X,{= 3} X, {>
3}V X, {Z 2} Xa{= 2} X, {= 2} X (> 2} X, (>
2} Xg{= 2V X, {= 2} X,{= 2} X, (= 23X (>

2} X {= 2} Xa(= 2}V X, (= 2} X, (= 2} Xo{>
23X (= 2} X,{= 3} (®)

Note that the expression of system
success S in (8) reveals clearly that it pertains
to a coherent system. The expression comprises
eight distinct prime implicants, none of which
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subsumes (can be absorbed) in another. Each
prime implicant is a product of solely upper
values X;{=j}of wvarious wvariables. For
convenience, we rearrange the terms in (8), to
let products with fewer variable instances
appear first

S=X3{=3}X,{=3} Vv X,{= 3} X,{= 3}

vV X3{= 3} X5{= 3} Xg{= 3}
V Xp{= 3} X5{= 3} Xg{= 3}

VX, (= 2} Xo{= 2} X, {= 2} X, {= 3} Xe (= 2}
VX, (> 23X,{> 23X {= 2)X (= 2}X,{> 3}
V X, (> 2} X3{= 2} X, (= 2} X (= 2} X, (= 2}

Xg{= 2}
V X, {= 2} Xo{= 2} X, {= 23Xe{= 2} X, {=
2} Xg{= 2} (82)

Table 1. Numerical values for the expectations of various variable instances, computed from data given in Lin et al. I,

X,{= 2} 0.897 X;{= 3} 0.905
X,{=3) 0.892 Xs{= 2} 0.953
X,{< 3} 0.108 X4{2} 0.048
X,{=2} 0.965 X5{< 3} 0.095

X,{2} 0.073 X {= 2} 0.863
X{< 2} 0.137 X{= 3} 0.903
Xs{< 3} 0.097 X{= 2} 0.943
X,{=2) 0.945 X,{= 3} 0.884

X,{2} 0.061 X,{< 3} 0.116
Xg{=3) 0.906 Xe{= 2} 0.965

Xa{2} 0.059 Xa{< 3} 0.094

The numerical values for the
expectations of various variable instances,
computed from the data given in [2] are listed
in Table 1.

3. The Multi-State Inclusion-Exclusion
Principle

The Inclusion-Exclusion (IE) Principle
computes the cardinality of the union of n sets,
through over-generous inclusion, followed by
compensating exclusion. This principle remains
valid when set cardinalities are replaced by
finite probabilities. In reliability context, it is
used for computing the probability of the union
of n events, or equivalently the expectation of
the disjunction (ORing) of the n indicator

variables of such events. Usually, these
indicator variables are products of instances of
the underlying variables, which stand for the
prime implicants P; (called minimal paths) of
system success, and the expectation of this
success is the reliability of the system. With this
interpretation, an application of the IE principle
results in the following expression of reliability

[10, 11]
n n
R =E{V;? P} =X E{(P} -
X Yasicjen, E{Pi AP} +
2221si<j<k5np E{Pi A P] A Pk} — .t
_ n
(—D™E{A\F, P;}. )

The number of terms in (8) is
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)+ () + () + o+ (Z,’;) =2 —1, (10)

i.e., it is exponential in the number of minimal
paths. To apply the IE principle to (8) which has
n, = 8, we need 255 terms.

The IE principle is valid and applicable
whether the implicants P; and their constituting
variables are two-valued or multi-valued.
However, the implementation of (9) in the
multi-state case needs to be aided by
simplification rules for various products of the
underlying variables. The IE simplicity is
manifested in the fact that the simplification
rule it requires (when handling coherent
success) is just the following domination rule
(which generalizes the idempotency rule of
AND for an uncomplemented literal (X A
X = X}) in the two-valued case)

Xk (= j1) Xk (= j2) = X (= j) for j, = ji, (11a)

A similar simplification required by IE
(when handling coherent failure) is the
following domination rule (which is another
generalization of the idempotency rule of AND
for a complemented literal (X, A X, = Xj) in
the two-valued case)

Xk (£ j1) Xk (£ J2) = Xk (S )2) for
J2 < J1s (11b)

Despite the great importance of the IE
principle in combinatorics and probability
theory, and despite its genuine conceptual
simplicity, it does not seem to be the method of
choice for evaluation of system reliability. It
produces an exponential number of terms that
have to be reduced subsequently via addition
and cancellation. Moreover, it involves so many
subtractions that make it highly sensitive to
round-off errors in the ultra-reliable regime [
127151 For the problem of the running example,
the symbolic computations are tedious, indeed.
To show the reader a glimpse of how
cumbersome this computation is, we show
below the derivation of two (out of 255) of the

terms involved, where repeated use is made of
the domination rule (11a)

PP, = (X3{= 3} Xs{= 3} Xg{= 3}) (X{=
2} X3{= 2} Xu{= 2} X, {= 3} X3{= 2})

= X,{> 2} X.{= 3} X, {= 21X (= 31X, {=
3} Xg{=> 3}, (12a)

PP, P; = (Xo{= 2} X3{= 3} Xu{= 2}X:{=
33X7{= 3} Xs{= 3D (X1 {= 2} Xo{= 2} X, {=
2}Xe{= 2} Xo{= 2} Xg{= 2})

= X, {> 2} X,{> 2} X5 {= 3} X, {= 2}X:{>
31X (= 2}X,{> 3} X (= 3). (12b)

The fact that the IE symbolic
computations for the running example were
terribly lengthy, made it highly error-prone. To
make these computations perfect, we sought the
guidance of a computer program written for the
same purpose.

4. Multistate Probability-Ready Expressions

The concept of a probability-ready
expression (PRE) is well-known in the two-
valued logical domain 6 and it is still
applicable for the multi-valued logical domain
(171 A Probability-Ready Expression is a random
expression that can be directly transformed, on a
one-to-one basis, to its statistical expectation (its
probability of being equal to 1) by replacing all
logic variables by their statistical expectations,
and also replacing logical multiplication and
addition (ANDing and ORing) by their
arithmetic counterparts. A logic expression is a
PRE if

a) all ORed products (terms formed by
ANDing of literals) are disjoint (mutually
exclusive),

b) all ANDed sums (alterms formed via
ORing of literals) are statistically independent.

Condition (a) is satisfied if for every pair
of ORed terms, there is at least a single
opposition, i.e., there is at least one variable that
appears with a certain set of instances in one
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term and appears with a complementary set of
instances in the other. Condition (b) is satisfied
if for every pair of ANDed alterms (sums of
disjunctions of literals), one alterm involves
variables describing a certain set of
components, while the other alterm depends on
variables describing a set of different
components (under the assumption of
independence of components).

While there are many methods to introduce
characteristic (a) of orthogonality (disjointness)
into a multi-valued logic expression [1-318-21],
there is no way to induce characteristic (b) of
statistical independence. The best that one can do
is to observe statistical independence when it
exists, and then be careful not to destroy or spoil
it and take advantage of it. Since one has the
freedom of handling a problem from a success or
a failure perspective, a choice should be made as
to which of the two perspectives can more readily
produce a PRE form. It is better to look at success
for a system of no or poor redundancy (a series
or almost-series system), and to view failure for
a system of full or significant redundancy (a

parallel or almost- parallel system) [10-22.23]

The introduction of orthogonality might be
achieved as follows. If neither of the two terms A
and B in the sum (A V B) subsumes the other
(AVB # A and AV B # B) and the two terms
are not disjoint (A AB # 0), then B can be
disjointed with A by factoring out any common
factor (using Boolean quotients) and then
applying the Reflection Law, namely

AV B =C((4/C)V (B/C))

=C((A/C) v (A4/C)(B/0))
= Av (4/0)B. (13)

In (13), the symbol C denotes the common
factor of A and B, and the Boolean quotient
(A/C) might be viewed as the term A with its
part common with B removed. If B subsumes A,
then C = A and A/C =1, so that (4/C) =
0, which means that B is absorbed in A. Note
that (13) leaves the term A intact and replaces

the term B by an expression that is disjoint with
A. The quotient (A/C) is a product of e entities
V. 1<k<e), so that (A/C) might be
expressed via De Morgan’s Law as a disjunction
of the form

@/0) = \/ 7. (14)
k=1

Note that each Yy is a literal that appears in
the product A and does not appear in the product
B. It stands for a disjunction of certain instances
of some variable X;u and henceV), is a
disjunction of the complementary instances of
the same variable. If we combine (13) with (14),
we realize that the term B is replaced by e terms
(e = 1), which are each disjoint with the term A,
but are not necessarily disjoint among
themselves. Therefore, we replace the De
Morgan’s Law in (14) by a disjoint version of it
(81 namely

Aa/c)y _ _
=Y, VY, v,V .. vy, .Y, T,

v Y4 (Y,

v,V ...

V (Ye_q

VY, 7) ). (14a)

When (14a) is combined with (13), one obtains

A V= A V (71 \ YIYZ \ Y1Y273 V..
VY,Y,..Y, ,V,)B, (15)

where the first term A still remains intact, while
the second term B is replaced by e terms which
are each disjoint with A and are also disjoint
among themselves. This means that one has a
choice of either disjointing B with A in A V B, or
disjointing A with B in B V A. The usual practice
that is likely to yield good results is to order the
terms in a given disjunction so that those with
fewer literals should appear earlier.

The PRE concept is valid and applicable
whether the products A and B as well as their
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constituting variables are two-valued or multi-
valued. However, the implementation of (15) in
the multi-state case needs to be aided by a few
simplification rules for various products of the
underlying variables. These simplification rules
include the afore-mentioned two domination
rules (11), the two differencing rules

Xk (= j1) X (£ )2) = XeGrji+ 1, .0,)2)
for j, = jj, (16a)
Xe(Zj) Xk (< Jj2) = X(rji +1,.,j2 = 1)
for j, > s, (16b)

which have no counterpart in the two-valued
case, unless they are replaced by the
orthogonality rules (which generalize the
orthogonality (X, A X), = 0) in the two-valued
case)

Xk (= j1) X (£ j) =0for j, <ji, (16¢c)
Xk (= j1) X (< j) =0for j, <ji, (16d)
Xe () X () =0, (16e)

and the complementation rules

X (=)} = X {<j}, (16f)
x> )= X (<)) (16g)
XU = Xel# 3, (16h)

Table 2 compares our initial success
expression (8, rearranged) and its final PRE
form, obtained after disjointing every original
product with all succeeding products ?* 2%, The
8 products in (8, rearranged) have been replaced
by 1+1+1+1+14+2+ 3+6 = 16 products. In a sense,
the success expression remained ‘shellable’ up to
its fifth term, while the sixth term was split into
two terms, and the last two terms were replaced
by three and six terms, respectively. The final
multiplying factors introduced gradually via (12)
and adjusted via (16) are distinguished in bold
red in the right column of Table 2. What remains
in black in this column is the variable instances
that remained intact within an initial product.

Table 2. Comparison of the initial success expression (8a) in a minimal sum-of-product form with the final success expression

in a probability-ready form

Initial success expression (Minimal s-o-p
form)

Final success expression (PRE)

Xs{=3} X, (= 3}

Xs{=3} X, (= 3}

V X,{> 3} X,{= 3}

V X,{> 3} X3{< 3} X,{> 3}

V X3{= 3} X5{= 3} Xg{= 3}

V X3{= 3} Xs{= 3} X7{< 3} Xg{= 3}

V X,{= 3} X5{= 3} Xg{= 3}

V X,{= 3} X3{< 3} X:{= 3}
X7{< 3} Xg{= 3}

V Xo{= 2} X3{= 2} X4{= 2} X;{= 3} Xg{
=2}

V X5{2} X3{2} Xo{= 2} X7{= 3}
Xg{= 2}

V X1{= 2} X,{= 2} X3{= 2} Xs{= 2} X,{
> 3}

Vv Xi{= 2} X»{2} X3{2}X,{< 2}
Xe{= 2} X7{= 3}
V Xi{Z 2} X5{2} X3{2}X4{= 2} X{= 2}
X7{= 3} Xg{< 2}

V X1{= 2} X3{= 2} X {= 2} Xe{= 2}
X7{2 2} Xg{= 2}

v X {= 2}X,{< 2} X3{2} X,{= 2}
Xe{= 2} Xo{> 2} Xg{> 2}
V X1{= 2}X,{2} X3{2} X,{= 2}
Xe{= 2} X7{2} Xg{= 2}
V X {> 23X, {> 3} X5{2) X, (> 2}
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Xs{< 3}Xe{= 2} X7{2} Xg{= 2}

V X, {> 2} Xo{= 2} X, {= 23X, (> 2} X, {>
2} Xg{= 2}

V Xi{= 2}X,{= 3} X3{2} X,{= 2} X5{= 3}X,{= 2} X,{2} Xg{2}

vV X1{= 2} X3{= 3} X,{= 2} X5{< 3}
Xe{= 2} X7{2} Xg{= 2}
V X, (22} Xs(= 3) X, (> 2)
X5{= 3} Xe{= 2} X7{2} X5{2}
V X {= 2} X,{2} X3{< 2} X,{= 2}
Xo{= 2} X,{= 2} Xg{= 2}
vV X1{= 2} X,{= 3} X3{< 2} X,{= 2}
Xs{< 3} X6{= 2} X,{2} Xg{= 2}
Vv X1{= 2} X,{= 3} X3{< 2} X,{= 2}
X5{= 3}Xe{= 2} X,{2} Xg{2}.

S. The Multi-State Boole-Shannon Expansion

A prominent way for converting a Boolean
formula into a PRE form is the Boole-Shannon
Expansion, which takes the following form in the
two-valued case 126,

fX) = X A fX10) v (X A F(XI1)), (17)

This Boole-Shannon Expansion expresses
a (two-valued) Boolean function f(X) in terms
of its two sub-functions f(X|0;) and f(X|1;)
These subfunctions are equal to the Boolean
quotients f(X)/X; and f(X)/X;, and hence are
obtained by restricting X; in the expression of
f(X) to 0 and 1, respectively. If f(X) is a
function of n variables, the two sub-functions
f(X]0;) and f(X|1;) are functions of at most
(n—1) wvariables. A possible (non-unique)
multi-valued extension of (17) is ['7]

S(X) =X {0} A (S(X)/X;{0}) Vv

X{1} A(SX)/X:{1}) v X {2} A
SX/X{2hH) v Xi{3} A(S(X)/
Xi3) v.. v Xiimi} A(S(X)/
Xi{m;}). (18)

The expansion (18) serves our purposes
very well. Once the sub-functions in (18) are
expressed by PRE expressions, S(X) will also be
in PRE form, due to the combination of the
following two facts:

(a) The R.H.S. of (18) has (m; + 1)
disjoint terms, each of which containing one of
the (m;+1) disjoint instances
Xl{O},Xl{l},Xl{Z}, Xl{3}5 ceey and Xi{mi} of
the variable X;,

(b) Each of these (m; + 1) terms is a
product of two statistically-independent entities,
since any sub-function S(X)/X;{j} (0<j <
m;) does not involve any instance of the (m; +
1)-valued variable X;, since its X;{j} instance

is set to 1, while all its other instances are set to
0.

The expansion (18) might be viewed as a
justification of the construction of the multi-
valued Karnaugh map " 281, This expansion
transforms directly, on a one-to-one basis, to the
probability domain as

E{S(X)} = E{X;{0}} » E{S(X)/X;{0}} +
EX {13} = E{SX)/X:{1}} + E{X;{2}} =
E{S(X)/X{2}} + E{X;{3}} x E{S(X)/
X33} + -+ + E{(X;{m;}} » E{S(X)/
Xi{m;}}. (19)

Equation (19) might be viewed as a
restatement of the Total Probability Theorem,
provided we interpret the expectation of a
Boolean quotient as a conditional probability. It
is the basis of multi-valued decision diagrams
(MDDs), that are optimally employed for the
reliability analysis of multi-state systems, and
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that constitute the multi-valued counterpart of the
Binary decision diagrams.

The expansion (18) is based on the
orthonormal expansion set {X;{0}, X;{1}, ..,
Xi{m;}}, a set of disjoint and exhaustive
elements. Any other orthonormal set (one of
disjoint and exhaustive elements) might serve
as an expansion basis for a different version of
the multi-valued Boole-Shannon expansion
other than (20). In the sequel, we will frequently
use an orthonormal basis of the form {Xl- {<

k3, X; {k}, X (> K3}

We now apply variants of the expansion
(18) to our running example. Employing, the
reduced orthonormal set of expansion {X7 {<
2}, X, {2}, X, {= 3}}, we obtain the following
Boole-Shannon expansion of S as given in (8a)
S=X,{<2} (S/X;{<2}) v X;{2}
S/ X7{2}) Vv X;{=3}(S/ X;{= 3}).(20)

Utilizing the relations
X7{= 3}/X;{< 2} =0, 21)
X {=2}/X;{<2} =0, (22)

which result from orthogonality of X, {< 2} to
each of X, {= 3}and X, {= 2}, we apply the
restriction { X, {< 2} = 1} to(8a). This replace
(8a) by the following expression for S/ X, {<
2}

X,{= 3} Xs{= 3} Xg{= 3}, (23)
which is not a PRE, and hence we decompose it
further using the orthonormal expansion set

{X3 {<3}, X3{= 3}}, namely

S/ X, {<2} = X3{<3} (§/X,{< 2} X3{<
3D) VvV X3{=3} (S/X;{<2}X;{=3}). (24)

Utilizing the relations
X3{=3}/X3{<3} =0, (25)
X3{=3}/X3{=z3} =1, (26)

we reduce (23) to the following expressions
for S/ X;{< 2} X;{< 3}and S/ X; {<
2} X;{= 3}

S/ X, {< 2} X3{< 3} = X,{= 3} Xs{=
3} Xg{= 3}, 27)

S/ X;{< 2} X5{=3} = Xs{= 3} Xs{= 3}V
Xo{= 3} Xs{= 3} Xg{= 3} = X5{= 3} Xs{= 3},
(28)

where (28) is simplified through the absorption
of the subsuming term X,{=> 3} Xs{=> 3} Xg{>
3} in the subsumed term X:{= 3} Xz{= 3}
(Recall that the set of literals in a subsuming
term is a superset of the set of literals in a
subsumed term). Subsequently, we rewrite (24)
as

S/ X7{< 2} = X3{< 3} (Xo{= 3} Xs{=
3} Xg{= 3}) vV X3{= 3} (Xs{= 3}Xs{= 3}).
(29)
In retrospect, we note that the application
of the disjointing operation (15) to (23)
produces the following expression, which is
simply a rearrangement of (29)

S/ X, {< 2} = (X3{= 3}V X,{= 3} X3{<

3} Xs{= 3} Xg{= 3}. (30)
Now, we observe that the relations

X;{=3}/X;{2} =0, (31)
X7 {= 2}/X7 {2} =1, (32)

result from the orthogonality of X, {2} to
X7 {= 3} and the fact that when we apply the
restriction {X,{2} =1} to X,{=2}=
X, {2}vX,{=1} then {X,{=2}=1}
Equations (31) and (32) lead to the replacement
of (8a) by the following expression for
S/ X7 {2}

S/ X, {2} = X5{= 3} Xs{= 3} Xe{= 3} v
X,{= 3} Xs{= 3} Xg{= 3}V X, {> 2} X5 (>
2} X, {= 2} Xo{= 2} Xe{= 2}V X {= 21X, {>
23X, {= 2} X {= 2} Xe{= 2}. (33)
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which is not a PRE, and hence we decompose it
further using the orthonormal expansion set

{Xs{< 2}, X5 {2}, Xg {= 3}}, namely
S/ X, {2} =Xg{< 2} (§/ X, {2} Xg{<2}) Vv

Xe{2}(S/ X7 {2} Xs{2}) Vv Xg{=3} (§/
X7{2} Xg {= 3}). (34)
Now, we utilize the relations
Xg{=3}/Xg{< 2} =0, (35)
Xg{=2}/Xg{< 2} = 0, (36)

to apply the restriction { Xg {< 2} = 1} to
(33), so as to discover that

S/ X, {2}Xg{< 2} = 0. (37)
Next, we use the relations

Xg{=3}/Xg{2} =0, (38)
Xg{=2}/Xg{2} = 1, (39)

to apply the restriction { Xg{2} = 1} to (33),
and hence reduce it to the following expression
for S/ X, {2}X5 {2}

S/ X7 {2} Xg {2}
= X1{2 2} X3{2 2} X4{2 2} Xs{z 2}
VvV Xi1{= 2} X,{= 2} X,{= 2}X{= 2}, (40)

which is not a PRE, but can be converted to
such an expression as

S/ X;{2}X {2} = X1{= 2}(X{= 2} v
X, {< 2} X5{= 2}) X, {= 2} X, {= 2}. (41)

Now, we utilize the relations
Xg{=3}/Xs{=3}=1, (42)
Xg{=2}/Xg{=3} =1, (43)

to apply the restriction { Xg {= 3} = 1} to (33),
and hence reduce it to the following expression
for S/ X, {2}Xg {= 3}
Sa =S/ X7 {2}Xg {= 3}
= X3{= 3} X;{= 3}
vV X,{= 3} X:{= 3}

V X1 {= 2} X3{= 2} X, {= 2} X¢{= 2} v
Xi{= 2} Xo{= 2} X, {= 2} X, {= 2}. (44)

which is not a PRE, and hence we decompose it
further using the following orthonormal
expansion set that involves two variables:
{X2{= 3}, X2{< 3}X5{= 3}, X, {< 3}X3{< 3}}.
The decomposition involves the three
subfunctions

Sa/{X2{= 3} = X3{= 3IXs{= 3} v Xs{= 3}V
Xi{2 2} X3{= 2} X4{= 2} Xo(= 2} V X {2
21X, {= 2}Xs{= 2} = Xs{=3} v X, (=

2} X4{= 2} Xo{= 23, (45)

S./X{< 31Xs(=3} = X{=3}vOv

Xi{= 2} Xo{= 2} Xe{= 2} v X, {= 2} (X2{2}/
X{<3DXu{= 2}Xs{= 2}} = Xs{= 3} Vv

X {= 2} X.{= 2} X,{= 2}, (46)

Sa/X2{< 3}X3{< 3} = X1 {= 2} (X3{2} /X3{<
3D Xo{= 2} Xe{= 2} Vv X  {= 2} (X,{2}/X,{<
3D Xo{= 2}Xe{= 2} = X1 {= 2}((X2{2}/X,{<
3D v (X5{2}/X3{< 3}) Xuf= 2} Xe{= 2}.  (47)

and hence (44) can be reduced to the PRE
form (taking into consideration that X;{<
3}(Xi{2}/Xi{< 3} = Xi{2} since X;{2}(X;{2}/
Xi{=3}=0) (X2{2}/X,{<3})

S/ X;{2}Xg {= 3} = (Xo{= 3}V X,{<
3}1X3{= 3D (Xs{= 3} v X1 {= 2} X, {=

2} X5{< 3}Xe{= 2} v X; {= 2}(X,{2}X5{<
3}V X, {< 21X3{2) Xu{= 2} Xc{= 2}, (48)

Combining (34), (37), (41) and (48), we
obtain the following PRE for S/ X, {2}

S/ X, {2} = Xg {2} (X1 {= 2} (X {= 2} Vv
Xo{< 2} X3{= 2}) Xu{= 2} Xe{= 2})

V Xg{= 3} (X,{= 3} Vv X,{< 3}X53{>
3NXs{= 3}V X1 {= 2} Xu{= 2} X:{<
3Mel{= 2} v X1 {= 2}(X,{2}X3{< 3}V

X{< 23X3{2}) Xu{= 2} Xe{= 2D). (49)
Now, we express S, = S/ X, {= 3} as

Sy =S/ X, {=3} = Xs{= 3} vV X, {> 3}
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V X3{= 3} X5{= 3} Xg{= 3} X,{= 3} X5{=

3} Xs{= 3}V X3{= 2} X3{= 2} X, {>

2} Xg{= 2} v Xi{= 2} X,{= 2} X3{>

2} Xe{= 2} v X1{= 2} X3{= 2} X, {=>

2} Xo{= 2} Xg{= 2} v X1 {= 2} X, {= 2} X, {=
2}Xe{= 2} Xg{= 2}

= X{=3} vV X,{= 3} v X,{= 2} X:{>

2} X, (> 2} Xs{= 2}V X, (= 2} X, {>

2} X3{= 2} X (= 2} v X, {= 2} X5 (>

2} X, (= 2} X (= 2} X (= 2} v X, (= 2} X, {=
23X, (= 2)X{= 2} Xg{= 2}. (50)

which is not a PRE, and hence we decompose it
further using the following orthonormal
expansion set that involves two variables:
{X2{= 3}, X2{< 3}X5{= 3}, X, {< 3}X3{< 3}}.
The decomposition involves the three

subfunctions
Sp/{X{=3}= 1, (51)
Sp/X{< 3}X3{= 3} =1, (52)

Sp/X2{< 3}X3{< 3} = (X2{2}/X,{<
3} (X3{2}/X5{< 3}) Xu{= 2} Xg{= 2}
vV Xi{= 2} (Xo{2}/X,{< 3D (X5{2}
/X3{< 3}) Xe{= 2}
vV X {= 2} (X5{2}
/X3{< 3}) Xo{= 2} Xe{= 2} X{= 2}

vV Xi{= 2} (X,{2}
/X2{< 3}) Xa{= 2}Xe{= 2} Xg{= 2}

= (X2{2}/X{< 3D (X3{2}/X3{< 3}) (Xu{=
2} X5(= 2}V X, (= 2} X (= 2DV X, (>

2} ((X2{2}/X{< 3D v (X3{2}/X3{<

3D) Xaf= 2} Xe{= 2} Xg{= 2}. (53)

Now, we rewrite (53) in the PRE form
Xo{< 33X3{< 3} (Sp/X{< 3}X5{< 3}) =

Xo{2} X3{2} (Xu{= 2} Xg{= 2} v (X4{< 2}
V Xu{= 2} Xg{< 2}) X1{= 2} Xe{= 2}V
Xi{= 2} (X {2}X3{< 2} v X,{<

2}3X5{2}) X4{= 2} Xe{= 2} Xg{= 2}. (54)

Utilizing (51), (52) and (54), we obtain
S/ X, {= 3} in PRE form as

S/ X, {=3}=X,{=3}Vv X,{< 3} X;{=3} v

Xo{2} X3{2} (X4{= 2} Xg{= 2} v (X\{< 2}
V Xo{= 2} Xg{< 2}) X;{= 2} X¢{=2})

V X1 {= 2} (X, {2}X3{< 2}V X, {<
2}3X3{2}) Xo{= 2} Xe{= 2} Xs{= 2}.  (55)

The final required PRE expression is
obtained via (20), (30), (49) and (55)

S=X,{<2} X{=3} v X,{= 3} X3{<
8}) Xs{= 3} Xg{=3} Vv

X7 {2} (X {2} (X {= 2}(Xo{= 2} v X,{<
2} X3{= 2}) X4{= 2} Xe{= 2})

vV Xg{= 3} (X,{= 3}V X,{< 3}X;3{=
3D (Xs{= 3} v Xi{= 2} X, {= 2} Xs{<
33Xe{= 2D v X1 {= 2}(X,{2}X5{< 3} v
Xo{< 23X3{21) Xu{= 2} Xe{= 2}) Vv

X, {= 3} X,{=3} v Xp{< 3} X3{=3} Vv

X212} X3{2} (Xo{= 2} Xg{= 2} v (Xu{< 2}
V Xu{= 2} Xe{< 2}) X1{= 2} Xe{= 2})

vV Xi{= 2} {21 X:{< 2} v XL (<

23X3{2}) Xu{= 2} Xe{= 2} Xg{= 2}). (56)
This PRE is converted, on a one-to-one

basis, into an expectation, by replacing each

Boolean variable and Boolean operator by its
arithmetic counterpart, namely

E{S} = E{X,{< 2}} (E{X5{=3}} + E{X,{=
3} E(X3{< 31 E{Xs{= 3} E(Xa{=3}} +

E{X;{2}} (E{Xs 21} (E{X,{= 2}} (E{X,{=
21} + E{X2{< 2}}E{X3{2 2} E{X,{=

21} E{Xe{= 2}}) + E{Xe{= 3}} (E{(X2{=
33} + E{X,{< 31} E{(Xs{= 3}}) (E{Xs{=
31 + EQ{= 2} E{X4{= 23} E{Xs{<

31} E{Xe{= 2}}) + E{X,{=

2HR(E{X,{2}} E{X3{< 3}} + E{X,{<

21} E{X3{2}}) E{X,{= 2}} E{X({= 2}}) +
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E{X;{= 3}} (E{X,{=3}} + E{Xa{<
3 E{Xs{= 3}} +

EMX. {2 E (Xa{23} (E(X,{= 23} E(Xe{= 2} +
(E(X,{< 23} + E{X,{= 2}} E{Xs{< 2}}) E{X,{>
2}} E{Xe{= 23)+E (X, (= 2} EXRNEXL
2RHEX (< 2HEMX(2)) E{X,{= 2}E{Xs (=
2NE{Xs(= 2})). (56a)

In retrospect, we note that our choice of
the decomposition set {X; {< 2}, X; {2}, X, {=
3}} in (20) is warranted by the definite
simplification achieved via the Boolean
quotients in (21), (22), (25), (26), (31), and (32).
Had we employed a smaller decomposition set
{X7 {<2}, X, {= 2}}, we would have
encountered a Boolean quotient of the form
(X7 {= 3}/X,{= 2}), which has no simple
form. Similarly, if we had adopted, instead, the
two-element decomposition set {X7 {< 3},

X; {= 3}}, we would have obtained a Boolean

quotient of the form (X;{= 2}/X,{< 3}),
which also does not possess a simple form.

6. Inclusion-Exclusion for Composite PRE
Paths

The literature abounds with innovative
attempts to mitigate the shortcomings of the
multi-state  inclusion-exclusion  (MS-IE)
procedure ! 29321 This section offers yet
another attempt along this direction. The
success expression (8a) is rewritten in the
factored form

S=R, VRV R; =X, {=3}VvX3{=
3}) (X7{= 3}V Xs{= 3} Xs{= 3})

V Xi{= 2} Xo{= 2} Xe{= 2} X7{= 2} Xg
> 2} (X{= 2} v X3{=2})

V Xp{= 2} X3{= 2} X7{= 3} (X4{= 2} Xg(2
2} v X, {= 2} X, {= 2}), (57)

which comprises three rather than eight
implicants or paths, and hence it has an IE
formula of just 7 (rather than 255) terms,
namely

E{S} = E{R.} + E{R,} +
E{R3}—E{R N2} — E{R, N3} — E{R,R3} +
E{R1R,R3}. (58)

However, this dramatic reduction in the
number of terms comes at a price, namely, the
implicant products in (58) are not necessarily in
PRE form, and must be recast as such.
Fortunately, the required cost is very modest
indeed. The first implicant is a product of two
statistically independent expressions, each of
which is easily converted into a PRE, namely

Ry = (X {= 3} vX,{<3}X3{=3}) (X,{=
3}V X{= 3} X,{< 3} Xg{= 3}). (59)

Likewise, the two other implicants are
casily converted into PREs, viz.

Ry, = X, {= 2} Xo{= 2} Xe{= 2} X, {=
2} Xg{= 2} (X{= 2} v X,{< 2}X3{= 2}).
(60)

R3 = X{= 2} X3{= 2}X,{= 3}

(X4{= 2} Xg{= 2} vV (X4 {< 2}V X, {=
21Xg{< 21X {= 2} Xs{= 2}). (61)

Products of these implicants inherit the
PRE property without further processing. They
just need simplification via the domination
rules (11)

R Ry, = (X{= 3}V X, {< 3}1X3{=

3D (X {= 2} v X,{< 2}X3{= 2}) X;{= 2}
Xu{= 2} Xo{= 2} X7{= 2} Xg{= 2} (X7{=

3} v X7{< 3}Xs{= 3} Xg{= 3})

= (Xx{= 3} v X,{< 3}X3{= 3}) X;{=

2} Xu{= 2} Xo{= 2}

(X7{= 3} Xg{= 2} vV X5{= 3} X,{2} Xg{= 3}).

(62)

R R; = X {= 3}V X, {<3}X3{=

3D (X,{= 3}V Xs{= 3} X7{< 3} Xg{=3})

X{= 2}

(Xa{= 2} Xg{= 2} v (X4 {< 2}V Xy {=
21Xg{< 2}) Xi{= 2} Xe{= 2}) X3{= 2}X,{=
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3} = (X,(= 3}X:(= 2} v X, (2} Xa{>
3)) X,{= 3}

(X4{= 2} Xg{= 2} V (Xu{< 2}V Xu{=
2}Xg{< 2}) X1{= 2} Xs{= 2}). (63)

R, R3 = X1{2 2} X4{2 2} Xe{Z 2} X7{2
2} Xg{= 2} (Xo{= 2} v X,{< 2}X3{=2})
Xo{= 2}

X3{= 2} X, {= 3} (X,{= 2} Xg{= 2} V
(Xa{< 2} v Xu{= 2}Xe{< 2}) X1 {= 2} Xo{=
2}) = X1{= 2}X,{= 2} X3{= 2} X,{=

2} Xo{= 2}X,{= 3} Xg{= 2}. (64)

RiR, N3 = R R R1R)RR3) =
(X2{= 3} v X, {< 3}X3{= 3}) Xi{= 2}X,{=
2} Xe{= 2} (X, {= 3} Xg{= 2}V X:{=

3} X7{2} Xg{= 3}) (Xo{= 3}X3{= 2} v
X,{2} X3{= 3}) X,{=3}

(X4{= 2} Xg{= 2} V (Xu{< 2}V Xu{=
21Xg{< 2}) Xi{= 2} Xc{= 2})

Xi{= 2})6{= 2} X3{= 2} X,{= 2}
Xe{= 2}X7{= 3} Xg{= 2}

= (Xo{= 3}X3{= 2} v X, {2}X3{= 3})
X, (2 23 X {2 2} Xe{= 23X, (= 3} Xof> 2).
(65)

7. Discussion

In this paper, we presented four methods
(in descending order of computational
complexity) for solving the problem of our
running example. Table 3 indicates that our four
methods agree on a value of 0.9819022224313,
which is a more precise version for the value of
network reliability (0.981902) that was obtained
earlier by Lin et al. 2. Of course, the exaggerated
precision of the values in Table 3 is not
practically warranted, but it instils confidence in
the correctness of the various computational
methods.

Table 3. Comparison of numerical results obtained for the same running example

Method Numerical Result
RSDP (Lin et al., 2014) 0.981902
Conventional IE (Equation (9)) 0.98190222243132085
PRE (Table 2) 0.981902222431299
MS-BS expansion (Equation (56a)) 0.981902222431299294
IE improved with PRE (Equation (58)) 0.9819022224312988074

8. Conclusions

This paper is a continuation of our earlier
efforts to extend the concept of the sum of
disjoint products (SDP) in the domain of multi-
state reliability to the more encompassing one
of a probability-ready expression (PRE). The
paper served as an exposition of the inter-
relationships among the multi-state concepts
MS-IE, MS-PRE, and MS-BS. This exposition
was obtained by applying four related standard
or novel approaches to the same problem of

multi-state network reliability. Each of these

approaches recovered the same result obtained
by the RSDP method.
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