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Abstract. This paper deals with an emergent variant of the classical problem of computing the 
probability of the union of n events, or equivalently the expectation of the disjunction (ORing) of n 
indicator variables for these events, i.e., the probability of this disjunction being equal to one. The 
variant considered herein deals with multi-valued variables, in which the required probability stands 
for the reliability of a multi-state delivery network (MSDN), whose system success is a two-valued 
function expressed in terms of multi-valued component successes. The paper discusses four 
approaches for handling the afore-mentioned problem in terms of a standard MSDN, whose success 
is known in minimal form as the disjunction of its prime implicants, which are the minimal paths of 
the pertinent network. The paper briefly outlines and discusses two standard solutions via the 
utilization of the multi-state inclusion-exclusion (MS-IE) principle, and via the construction of a 
multi-state probability-ready expression (MS-PRE). We successfully extrapolate the PRE concept 
from the two-valued logical domain to the multi-valued logical domain, and employ it for a direct 
transformation of a random logical expression, on a one-to-one basis, to its statistical expectation 
form, simply by replacing all logic variables by their statistical expectations, and also substituting 
arithmetic multiplication and addition for their logical counterparts (ANDing and ORing). The main 
contribution of the paper is to provide two systematic and more efficient procedures for handling the 
required problem. The first procedure uses the multi-state Boole-Shannon expansion, while the 
second procedure applies the MS-IE principle to fewer (factored or composite) paths that are set (at 
minimal cost) to PRE form. The four approaches discussed are illustrated with a detailed symbolic 
example of a real-case study, and each of them produces a more precise version of the same 
numerical value that was obtained earlier by the method of recursive sum of disjoint products 
(RSDP). The paper is a part of an on-going activity that strives to provide a pedagogical treatment 
of multi-state reliability problems, and to establish a clear and insightful interrelationship between 
the two-state modeling and the multi-state one by stressing that multi-valued concepts are natural 
and simple extensions of two-valued ones.  

Keywords: Network reliability, Inclusion-exclusion, Probability-ready expression, Boole-Shannon 
expansion, Multi-state system, Multiple-valued logic, Symbolic expression, Multi-State 
Delivery Network. 

 

 

1. Introduction 

This paper deals with a fundamental problem of 
multi-state reliability, which pertains to the 
computation of the expectation of the logical 
expression of a multi-state disjunctive normal 

form (DNF). Currently, the most 
computationally efficient method for handling 
this problem is an automated implementation of 
the method of the recursive sum of disjoint 
products (RSDP) [1–3]. We present a tutorial 
discussion of four approaches (in descending 
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order of complexity) for solving this problem. 
These approaches are based on (a) the multi-
state inclusion-exclusion (MS-IE) principle, (b) 
the concept of a multi-state probability-ready 
expression (MS-PRE), (c) the multi-state 
Boole-Shannon (MS-BS) expansion, and (d) a 
novel approach that combines factoring, MS-IE 
and MS-PRE. Our third approach (occasionally 
associated with the second) captures the 
essence of the RSDP method. 

This paper is a part of an on-going 
activity that strives to provide a pedagogical 
treatment of multi-state reliability problems. 
We aspire to establish a clear and insightful 
interrelationship between the two-state 
modeling and the multi-state one by stressing 
that multi-valued concepts are natural and 
simple extensions of two-valued ones. 
Moreover, we hope to extend the concept of the 
sum of disjoint products (SDP) in the multi-
state domain to the more encompassing one of 
a probability-ready expression (PRE). Finally, 
we need to provide a useful liaison among MS-
IE, MS-PRE, and MS-BS.  

The organization of the remainder of this 
paper is as follows. Section 2 presents 
important pertinent assumptions and notation. 
It further introduces a running example of a 
multi-state delivery network (MSDN) with 
multiple suppliers, borrowed from Lin et al. [2]. 
Section 3 introduces the multi-state inclusion-
exclusion (MS-IE) principle, while Section 4 
extends the concept of a multi-state probability-
ready expression (MS-PRE) from the binary to 

the multi-state case. The two sections outline 
the application of their pertinent methods to the 
running example. Section 5 presents the multi-
state Boole-Shannon, and demonstrate it in 
terms of the running example.  Section 7 applies 
the multi-state inclusion-exclusion (MS-IE) 
principle to the same example using fewer 
(factored or composite) paths that are set (at 
minimal cost) to PRE form. Section 7 discusses 
the results obtained, while Section 8 concludes 
the paper. 

2. Assumptions, Notation and Specification of 
a Running Example 

2.1 Assumptions 

 The model considered is one of a system 
with binary output and multistate components, 
specified by the structure or success function 
𝑆 𝑿  [4] 

𝑆: 0, 1, ⋯ , 𝑚 0, 1, ⋯ , 𝑚 … 
0, 1, ⋯ , 𝑚 → 0, 1 .          1  

 The system is generally non-
homogeneous, i.e., the number of system states 
(two) and the numbers of component states 
𝑚 1 , 𝑚 1 , ⋯ , 𝑚 1  might differ. 

When these numbers have a common value, the 
system reduces to a homogeneous one. 

 The system is a non-repairable one with 
statistically independent non-identical 
(heterogeneous) components. 

The system is a coherent one enjoying 
the properties of causality, monotonicity, and 
component relevancy [4-9].

 

2.2 Notation  

Symbol  Description 

𝑋  A multivalued input variable representing component 𝑘 1 𝑘 𝑛 , where 𝑋 ∈ 0, 1, … , 𝑚 , 
and  𝑚 1 is the highest value of 𝑋 . 

𝑋 𝑗  A binary variable representing instant 𝑗 of 𝑋  

𝑋 𝑗 𝑋 𝑗 ,  
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i.e., 𝑋 𝑗 1 if 𝑋 𝑗 and 𝑋 𝑗 0 if 𝑋 𝑗. The instances 𝑋 𝑗  for  0 𝑗 𝑚  form 
an orthonormal set, namely, for 1 𝑘 𝑛  

⋁  𝑋 𝑗 1,                                                                   (2a) 

𝑋 𝑗  𝑋 𝑗 0  for  𝑗 𝑗  .                                             (2b) 

Orthonormality is very useful in constructing inverses or complements. The complement of the 
union of certain instances is the union of the complementary instances. In particular, the 
complement of 𝑋 𝑗 𝑋 𝑗, 𝑗 1, … , 𝑚  is 𝑋 𝑗 𝑋 0, 1, … , 𝑗 1 . 

𝑋 𝑗  An upper value of  𝑋  0 𝑗 𝑚  : 

𝑋 𝑗 𝑋 𝑗, 𝑗 1, … , 𝑚 ⋁ 𝑋 𝑖 𝑋 𝑗 ∨ 𝑋 𝑗 1 ∨ … ∨ 𝑋 𝑚 .         (3) 

The value 𝑋 0  is identically 1. The set 𝑋 𝑗  for 1 𝑗 𝑚  is neither independent nor 
disjoint, and hence it is difficult to be handled mathematically, but it is very convenient for 
translating the verbal or map/tabular description of a coherent component into a mathematical 
form when viewing component success at level 𝑗. The complement of 𝑋 𝑗  is  

𝑋 𝑗 𝑋 0, 1, … , 𝑗 1 𝑋 0 ∨ 𝑋 1 … ∨ 𝑋 𝑗 1 𝑋 𝑘 𝑗 1 .         (4)

𝑋𝒌 𝑗  A lower value of  𝑋  0 𝑗 𝑚 :   

𝑋 𝑗 𝑋 0, 1, … , 𝑗 ⋁ 𝑋 𝑖 𝑋 0 ∨ 𝑋 1 … ∨ 𝑋 𝑗 1 ∨ 𝑋 𝑗 .          (5) 

The value 𝑋 𝑚  is identically 1. The set 𝑋 𝑗   for  0 𝑗 𝑚 1  is neither 
independent nor disjoint, and hence it is not convenient for mathematical manipulation though it 
is suitable for expressing component failure at level 𝑗 1 . Instances, upper values and lower 
values are related by 

𝑋 𝑗 𝑋 𝑗  𝑋 𝑗 1 𝑋 𝑗 𝑋 𝑗 1 𝑋 𝑗  𝑋 𝑗 1  

𝑋 𝑗 𝑋 𝑗 1 .                                                 (6)

𝑆 A binary output variable representing the system, where 𝑆 ∈ 0, 1 . The function 𝑆 𝑿  is usually 
called the system success or the structure function. Its complement 𝑆̅ 𝑿  is called system failure, 
and is also a binary variable. The logical sum and arithmetic sum of success and failure are both 
equal to 1, namely  

𝑆 𝑿 ∨ 𝑆̅ 𝑿  𝑆 𝑿  𝑆̅ 𝑿 1.                                      (7)
 

2.3 Specifications for a Running Example 

Lin et al. [2] studied a specific multi-state 
delivery network (MSDN) with multiple 
suppliers, one market, multiple transfer centers 
and eight branches. They derived an expression 
of system success for specific data of delivery 
costs, probability distributions of all branches, 
available capacities, suppliers’ production 
capacities, deterioration rate vector for the 
minimal paths obtained, demand, and budget. 
They presented the final multi-state success in 

their Table 2, which is expressed below, with an 
appropriate translation of notation 

𝑆 𝑋 3  𝑋 3  𝑋 3 ∨ 𝑋 3  𝑋  
3 ∨  𝑋 3  𝑋 3  𝑋 3 ∨  𝑋 2  𝑋
2  𝑋 2  𝑋 3  𝑋 2  ∨  𝑋 3  𝑋
3 ∨  𝑋 2  𝑋 2  𝑋 2  𝑋 2  𝑋
2  𝑋 2 ∨  𝑋 2  𝑋 2  𝑋 2 𝑋
2  𝑋 2  𝑋 2 ∨  𝑋 2  𝑋 2  𝑋
2 𝑋 2  𝑋 3 .                                       (8) 

Note that the expression of system 
success 𝑆 in (8) reveals clearly that it pertains 
to a coherent system. The expression comprises 
eight distinct prime implicants, none of which 
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subsumes (can be absorbed) in another. Each 
prime implicant is a product of solely upper 
values 𝑋 𝑗  of various variables. For 
convenience, we rearrange the terms in (8), to 
let products with fewer variable instances 
appear first 

𝑆 𝑋 3  𝑋  3  ∨  𝑋 3  𝑋 3  

∨ 𝑋 3  𝑋 3  𝑋 3
∨  𝑋 3  𝑋 3  𝑋 3   

∨ 𝑋 2  𝑋 2  𝑋 2  𝑋 3  𝑋 2  

∨ 𝑋 2 𝑋 2 𝑋 2 𝑋 2 𝑋 3                        

∨  𝑋 2  𝑋 2  𝑋 2  𝑋 2  𝑋 2  

 𝑋 2  

∨  𝑋 2  𝑋 2  𝑋 2 𝑋 2  𝑋
2  𝑋 2                                                   (8a) 

 

Table 1. Numerical values for the expectations of various variable instances, computed from data given in Lin et al. [2]. 

𝑋 2  0.897 𝑋 3  0.905 

𝑋 3  0.892 𝑋 2  0.953 

𝑋 3  0.108 𝑋 2  0.048 

𝑋 2  0.965 𝑋 3  0.095 

𝑋 2  0.073 𝑋 2  0.863 

𝑋 2   0.137 𝑋 3  0.903 

𝑋 3   0.097 𝑋 2  0.943 

𝑋 2   0.945 𝑋 3   0.884 

𝑋 2   0.061 𝑋 3   0.116 

𝑋 3   0.906 𝑋 2   0.965 

𝑋 2   0.059 𝑋 3   0.094 

 

 

 The numerical values for the 
expectations of various variable instances, 
computed from the data given in [2] are listed 
in Table 1. 

3. The Multi-State Inclusion-Exclusion 
Principle 

The Inclusion-Exclusion (IE) Principle 
computes the cardinality of the union of 𝑛 sets, 
through over-generous inclusion, followed by 
compensating exclusion. This principle remains 
valid when set cardinalities are replaced by 
finite probabilities. In reliability context, it is 
used for computing the probability of the union 
of 𝑛 events, or equivalently the expectation of 
the disjunction (ORing) of the 𝑛 indicator 

variables of such events. Usually, these 
indicator variables are products of instances of 
the underlying variables, which stand for the 
prime implicants 𝑃  (called minimal paths) of 
system success, and the expectation of this 
success is the reliability of the system. With this 
interpretation, an application of the IE principle 
results in the following expression of reliability 
[10, 11] 

𝑅 𝐸 ⋁ 𝑃 ∑ 𝐸 𝑃
∑ ∑ 𝐸 𝑃 ∧ 𝑃
 ∑ ∑ ∑ 𝐸 𝑃 ∧ 𝑃 ∧ 𝑃   …

1 𝐸 ⋀ 𝑃 ..                        (9) 

The number of terms in (8) is  
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⋯  2 1,   (10) 

i.e., it is exponential in the number of minimal 
paths. To apply the IE principle to (8) which has 
𝑛 8, we need 255 terms. 

The IE principle is valid and applicable 
whether the implicants 𝑃  and their constituting 
variables are two-valued or multi-valued. 
However, the implementation of (9) in the 
multi-state case needs to be aided by 
simplification rules for various products of the 
underlying variables. The IE simplicity is 
manifested in the fact that the simplification 
rule it requires (when handling coherent 
success) is just the following domination rule 
(which generalizes the idempotency rule of 
AND for an uncomplemented literal (𝑋 ∧
𝑋 𝑋 ) in the two-valued case) 

𝑋 𝑗  𝑋 𝑗  𝑋 𝑗   for   𝑗 𝑗 , (11a) 

A similar simplification required by IE 
(when handling coherent failure) is the 
following domination rule (which is another 
generalization of the idempotency rule of AND 
for a complemented literal ( 𝑋 ∧  𝑋  𝑋 ) in 
the two-valued case) 

𝑋 𝑗  𝑋 𝑗  𝑋 𝑗                   for   
𝑗 𝑗 ,                                              (11b) 

Despite the great importance of the IE 
principle in combinatorics and probability 
theory, and despite its genuine conceptual 
simplicity, it does not seem to be the method of 
choice for evaluation of system reliability. It 
produces an exponential number of terms that 
have to be reduced subsequently via addition 
and cancellation. Moreover, it involves so many 
subtractions that make it highly sensitive to 
round-off errors in the ultra-reliable regime [10, 

12–15]. For the problem of the running example, 
the symbolic computations are tedious, indeed. 
To show the reader a glimpse of how 
cumbersome this computation is, we show 
below the derivation of two (out of 255) of the 

terms involved, where repeated use is made of 
the domination rule (11a) 

𝑃 𝑃  𝑋 3  𝑋 3  𝑋 3  𝑋
2  𝑋 2  𝑋 2  𝑋 3  𝑋 2  

 𝑋 2  𝑋 3  𝑋 2 𝑋 3 𝑋
3  𝑋 3 ,                                               (12a) 

𝑃 𝑃 𝑃  𝑋 2  𝑋 3  𝑋 2 𝑋
3 𝑋 3  𝑋 3 𝑋 2  𝑋 2  𝑋
2 𝑋 2  𝑋 2  𝑋 2  

𝑋 2  𝑋 2  𝑋 3  𝑋 2 𝑋
3 𝑋 2 𝑋 3  𝑋 3 .                    (12b) 

The fact that the IE symbolic 
computations for the running example were 
terribly lengthy, made it highly error-prone. To 
make these computations perfect, we sought the 
guidance of a computer program written for the 
same purpose. 

4. Multistate Probability-Ready Expressions 

The concept of a probability-ready 
expression (PRE) is well-known in the two-
valued logical domain [16], and it is still 
applicable for the multi-valued logical domain 
[17]. A Probability-Ready Expression is a random 
expression that can be directly transformed, on a 
one-to-one basis, to its statistical expectation (its 
probability of being equal to 1) by replacing all 
logic variables by their statistical expectations, 
and also replacing logical multiplication and 
addition (ANDing and ORing) by their 
arithmetic counterparts. A logic expression is a 
PRE if  

a) all ORed products (terms formed by 
ANDing of literals) are disjoint (mutually 
exclusive),  

b) all ANDed sums (alterms formed via 
ORing of literals) are statistically independent. 

Condition (a) is satisfied if for every pair 
of ORed terms, there is at least a single 
opposition, i.e., there is at least one variable that 
appears with a certain set of instances in one 
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term and appears with a complementary set of 
instances in the other.  Condition (b) is satisfied 
if for every pair of ANDed alterms (sums of 
disjunctions of literals), one alterm involves 
variables describing a certain set of 
components, while the other alterm depends on 
variables describing a set of different 
components (under the assumption of 
independence of components).  

While there are many methods to introduce 
characteristic (a) of orthogonality (disjointness) 
into a multi-valued logic expression [1–3,18–21], 
there is no way to induce characteristic (b) of 
statistical independence. The best that one can do 
is to observe statistical independence when it 
exists, and then be careful not to destroy or spoil 
it and take advantage of it. Since one has the 
freedom of handling a problem from a success or 
a failure perspective, a choice should be made as 
to which of the two perspectives can more readily 
produce a PRE form. It is better to look at success 
for a system of no or poor redundancy (a series 
or almost-series system), and to view failure for 
a system of full or significant redundancy (a 
parallel or almost- parallel system) [10, 22, 23] . 

The introduction of orthogonality might be 
achieved as follows. If neither of the two terms 𝐴 
and 𝐵 in the sum (𝐴 ∨ 𝐵) subsumes the other 
(𝐴 ∨ 𝐵 𝐴 and 𝐴 ∨ 𝐵 𝐵) and the two terms 
are not disjoint (𝐴 ∧ 𝐵 0), then 𝐵 can be 
disjointed with 𝐴 by factoring out any common 
factor (using Boolean quotients) and then 
applying the Reflection Law, namely 

𝐴 ∨ 𝐵 𝐶 𝐴/𝐶 ∨ 𝐵/𝐶
𝐶 𝐴/𝐶 ∨ 𝐴/𝐶 𝐵/𝐶
𝐴 ∨ 𝐴/𝐶 𝐵.                    13  

In (13), the symbol 𝐶 denotes the common 
factor of 𝐴 𝑎𝑛𝑑 𝐵, and the Boolean quotient 
𝐴/𝐶  might be viewed as the term 𝐴 with its 

part common with 𝐵 removed. If 𝐵 subsumes 𝐴, 
then 𝐶 𝐴 and 𝐴/𝐶 1, so that 𝐴/𝐶
0, which means that 𝐵 is absorbed in 𝐴. Note 
that 13  leaves the term 𝐴 intact and replaces 

the term 𝐵 by an expression that is disjoint with 
A. The quotient 𝐴/𝐶  is a product of 𝑒 entities 
 𝑌   1 𝑘 𝑒 , so that 𝐴/𝐶  might be 
expressed via De Morgan’s Law as a disjunction 
of the form 

𝐴/𝐶 𝑌 .                                   14  

Note that each 𝑌  is a literal that appears in 
the product 𝐴 and does not appear in the product 
𝐵. It stands for a disjunction of certain instances 
of some variable 𝑋  𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑌  is a 
disjunction of the complementary instances of 
the same variable. If we combine (13) with (14), 
we realize that the term 𝐵 is replaced by 𝑒 terms 
𝑒 1 , which are each disjoint with the term 𝐴, 

but are not necessarily disjoint among 
themselves. Therefore, we replace the De 
Morgan’s Law in (14) by a disjoint version of it 
[8], namely 

𝐴/𝐶
𝑌 ∨ 𝑌 𝑌 ∨ 𝑌 𝑌 𝑌 ∨ … ∨ 𝑌 𝑌 … 𝑌 𝑌
𝑌

∨ 𝑌 𝑌
∨ 𝑌 𝑌 ∨ … …  
∨ 𝑌
∨ 𝑌 𝑌 … .                                             14𝑎  

When (14a) is combined with (13), one obtains 

𝐴 ∨ 𝐴 ∨ 𝑌 ∨ 𝑌 𝑌 ∨ 𝑌 𝑌 𝑌 ∨ … 
∨ 𝑌 𝑌 … 𝑌 𝑌 𝐵,              15  

where the first term 𝐴 still remains intact, while 
the second term 𝐵 is replaced by 𝑒 terms which 
are each disjoint with 𝐴 and are also disjoint 
among themselves. This means that one has a 
choice of either disjointing 𝐵 with 𝐴 in 𝐴 ∨ 𝐵, or 
disjointing 𝐴 with 𝐵 in 𝐵 ∨ 𝐴. The usual practice 
that is likely to yield good results is to order the 
terms in a given disjunction so that those with 
fewer literals should appear earlier.  

The PRE concept is valid and applicable 
whether the products 𝐴 and 𝐵 as well as their 
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constituting variables are two-valued or multi-
valued. However, the implementation of (15) in 
the multi-state case needs to be aided by a few 
simplification rules for various products of the 
underlying variables. These simplification rules 
include the afore-mentioned two domination 
rules (11), the two differencing rules   

𝑋 𝑗  𝑋 𝑗  𝑋 𝑗 , 𝑗 1, … , 𝑗               
for   𝑗 𝑗 ,                                                  (16a) 

𝑋 𝑗  𝑋 𝑗  𝑋 𝑗 , 𝑗 1, … , 𝑗 1          
for   𝑗 𝑗 ,                                                 (16b) 

which have no counterpart in the two-valued 
case, unless they are replaced by the 
orthogonality rules (which generalize the 
orthogonality (𝑋 ∧  𝑋 0) in the two-valued 
case) 

𝑋 𝑗  𝑋 𝑗  0 for   𝑗 𝑗 ,         (16c) 

𝑋 𝑗  𝑋 𝑗  0 for   𝑗 𝑗 ,         (16d) 

𝑋 𝑗  𝑋 𝑗  0,                                     (16e) 

and the complementation rules 

 𝑋 𝑗   𝑋 𝑗 ,                       (16f) 

𝑋 𝑗   𝑋 𝑗 ,                      (16g) 

𝑋 𝑗   𝑋 𝑗 ,                                       (16h) 

Table 2 compares our initial success 
expression (8, rearranged) and its final PRE 
form, obtained after disjointing every original 
product with all succeeding products [24, 25]. The 
8 products in (8, rearranged) have been replaced 
by 1+1+1+1+1+2+ 3+6 = 16 products. In a sense, 
the success expression remained ‘shellable’ up to 
its fifth term, while the sixth term was split into 
two terms, and the last two terms were replaced 
by three and six terms, respectively. The final 
multiplying factors introduced gradually via (12) 
and adjusted via (16) are distinguished in bold 
red in the right column of Table 2. What remains 
in black in this column is the variable instances 
that remained intact within an initial product. 

 

Table 2. Comparison of the initial success expression (8a) in a minimal sum-of-product form with the final success expression 
in a probability-ready form 

Initial success expression (Minimal s-o-p 
form) 

Final success expression (PRE) 

𝑋 3  𝑋  3  𝑋 3 𝑋 3  

∨  𝑋 3  𝑋 3  ∨ 𝑋 3 𝑿𝟑 𝟑 𝑋 3  

∨ 𝑋 3  𝑋 3  𝑋 3  ∨ 𝑋 3 𝑋 3 𝑿𝟕 𝟑  𝑋 3  

∨  𝑋 3  𝑋 3  𝑋 3  

 

∨ 𝑋 3 𝑿𝟑 𝟑 𝑋 3  

𝑿𝟕 𝟑 𝑋 3  

∨ 𝑋 2  𝑋 2  𝑋 2  𝑋 3  𝑋
2  

∨ 𝑿𝟐 𝟐 𝑿𝟑 𝟐 𝑋 2 𝑋 3  

𝑋 2  

∨  𝑋 2  𝑋 2  𝑋 2  𝑋 2  𝑋
3  

∨ 𝑋 2 𝑿𝟐 𝟐 𝑿𝟑 𝟐 𝑿𝟒 𝟐  

𝑋 2 𝑋 3  

∨ 𝑋 2 𝑿𝟐 𝟐 𝑿𝟑 𝟐 𝑿𝟒 𝟐  𝑋 2  

𝑋 3 𝑿𝟖 𝟐  

∨  𝑋 2  𝑋 2  𝑋 2  𝑋 2  

 𝑋 2  𝑋 2  

∨ 𝑋 2 𝑿𝟐 𝟐 𝑿𝟑 𝟐  𝑋 2  

𝑋 2 𝑋 2 𝑋 2  

∨  𝑋 2 𝑿𝟐 𝟐  𝑿𝟑 𝟐   𝑋 2  

𝑋 2 𝑿𝟕 𝟐 𝑋 2  

∨ 𝑋 2 𝑿𝟐 𝟑 𝑿𝟑 𝟐 𝑋 2  
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𝑿𝟓 𝟑 𝑋 2 𝑿𝟕 𝟐 𝑋 2  

∨  𝑋 2  𝑋 2  𝑋 2 𝑋 2  𝑋
2  𝑋 2         

∨ 𝑋 2 𝑿𝟐 𝟑 𝑿𝟑 𝟐 𝑋 2 𝑿𝟓 𝟑 𝑋 2  𝑿𝟕 𝟐 𝑿𝟖 𝟐  

∨ 𝑋 2 𝑿𝟑 𝟑 𝑋 2  𝑿𝟓 𝟑  

 𝑋 2  𝑿𝟕 𝟐  𝑋 2  

∨  𝑋 2   𝑿𝟑 𝟑  𝑋 2  

 𝑿𝟓 𝟑  𝑋 2  𝑿𝟕 𝟐  𝑿𝟖 𝟐  

∨  𝑋 2  𝑿𝟐 𝟐  𝑿𝟑 𝟐  𝑋 2  

𝑋 2  𝑋 2  𝑋 2  

∨ 𝑋 2  𝑿𝟐 𝟑  𝑿𝟑 𝟐  𝑋 2  

𝑿𝟓 𝟑 𝑋 2  𝑿𝟕 𝟐  𝑋 2  

∨ 𝑋 2 𝑿𝟐 𝟑 𝑿𝟑 𝟐  𝑋 2  

𝑿𝟓 𝟑 𝑋 2 𝑿𝟕 𝟐 𝑿𝟖 𝟐 . 

 

5.  The Multi-State Boole-Shannon Expansion 

A prominent way for converting a Boolean 
formula into a PRE form is the Boole-Shannon 
Expansion, which takes the following form in the 
two-valued case [26]. 

𝑓 𝑿   𝑋  ∧  𝑓 𝑿|0  ∨  𝑋  ∧  𝑓 𝐗|1 , (17) 

This Boole-Shannon Expansion expresses 
a (two-valued) Boolean function 𝑓 𝑿  in terms 
of its two sub-functions 𝑓 𝑿|0  and 𝑓 𝑿|1  
These subfunctions are equal to the Boolean 
quotients 𝑓 𝑿 /𝑋  and 𝑓 𝑿 /𝑋 , and hence are 
obtained by restricting 𝑋  in the expression of 
𝑓 𝑿  to 0 and 1, respectively. If 𝑓 𝑿  is a 
function of 𝑛 variables, the two sub-functions 
𝑓 𝑿|0  and 𝑓 𝑿|1  are functions of at most 
𝑛 1  variables. A possible (non-unique) 

multi-valued extension of (17) is [17] 

 𝑆 𝑿  𝑋 0  ∧ 𝑆 𝑿 /𝑋 0  ∨
  𝑋 1  ∧ 𝑆 𝑿 /𝑋 1  ∨   𝑋 2  ∧
𝑆 𝑿 /𝑋 2   ∨   𝑋 3  ∧ 𝑆 𝑿 /

𝑋 3  ∨ . ..   ∨   𝑋 𝑚  ∧ 𝑆 𝑿 /
𝑋 𝑚 .                                                     (18) 

The expansion (18) serves our purposes 
very well. Once the sub-functions in (18) are 
expressed by PRE expressions, 𝑆 𝐗  will also be 
in PRE form, due to the combination of the 
following two facts:  

(a) The R.H.S. of (18) has 𝑚 1  
disjoint terms, each of which containing one of 
the 𝑚 1  disjoint instances  
𝑋 0 , 𝑋 1 , 𝑋 2 , 𝑋 3 , …, and 𝑋 𝑚  of 
the variable 𝑋 ,   

(b) Each of these 𝑚 1  terms is a 
product of two statistically-independent entities, 
since any sub-function 𝑆 𝑿 /𝑋 𝑗  (0 𝑗
 𝑚 ) does not involve any instance of the 𝑚
1 -valued variable 𝑋 , since its  𝑋 𝑗  instance 
is set to 1, while all its other instances are set to 
0.  

The expansion (18) might be viewed as a 
justification of the construction of the multi-
valued Karnaugh map [27, 28]. This expansion 
transforms directly, on a one-to-one basis, to the 
probability domain as 

𝐸 𝑆 𝑿 𝐸 𝑋 0 ∗ 𝐸 𝑆 𝑿 /𝑋 0  
  𝐸 𝑋 1 ∗ 𝐸 𝑆 𝑿 /𝑋 1    𝐸 𝑋 2 ∗
𝐸 𝑆 𝑿 /𝑋 2   𝐸 𝑋 3 ∗ 𝐸 𝑆 𝑿 /
𝑋 3 ⋯  𝐸 𝑋 𝑚 ∗ 𝐸 𝑆 𝑿 /
𝑋 𝑚 .                           (19) 

Equation (19) might be viewed as a 
restatement of the Total Probability Theorem, 
provided we interpret the expectation of a 
Boolean quotient as a conditional probability. It 
is the basis of multi-valued decision diagrams 
(MDDs), that are optimally employed for the 
reliability analysis of multi-state systems, and 
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that constitute the multi-valued counterpart of the 
Binary decision diagrams.   

The expansion (18) is based on the 
orthonormal expansion set 𝑋 0 , 𝑋 1 , …, 
𝑋 𝑚 , a set of disjoint and exhaustive 
elements. Any other orthonormal set (one of 
disjoint and exhaustive elements) might serve 
as an expansion basis for a different version of 
the multi-valued Boole-Shannon expansion 
other than (20). In the sequel, we will frequently 
use an orthonormal basis of the form 𝑋  

𝑘 , 𝑋  𝑘 , 𝑋 𝑘 .  

We now apply variants of the expansion 
(18) to our running example. Employing, the 
reduced orthonormal set of expansion 𝑋  

2 , 𝑋  2 , 𝑋  3 ,  we obtain the following 
Boole-Shannon expansion of 𝑆 as given in (8a) 

𝑆  𝑋  2   (𝑆/ 𝑋  2    ∨   𝑋  2   
(𝑆/ 𝑋  2    ∨  𝑋  3  (𝑆/ 𝑋  3 .(20) 

Utilizing the relations  

𝑋  3 /𝑋  2 0,                      (21) 

𝑋  2 /𝑋  2  0,                     (22) 

which result from orthogonality of 𝑋  2  to 
each of 𝑋  3  and 𝑋  2 , we apply the 
restriction { 𝑋  2 1} to (8a). This replace 
(8a) by the following expression for 𝑆/ 𝑋  
2  

𝑆/ 𝑋  2 𝑋 3  𝑋 3  𝑋 3   ∨
 𝑋 3  𝑋 3  𝑋 3 ,             (23) 

which is not a PRE, and hence we decompose it 
further using the orthonormal expansion set   
𝑋  3 , 𝑋  3 , namely 

𝑆/ 𝑋  2  𝑋  3   (𝑆/ 𝑋  2  𝑋  

3     ∨  𝑋  3   (𝑆/ 𝑋  2  𝑋  3 .    (24) 

Utilizing the relations  

𝑋  3 /𝑋  3 0,                      (25) 

𝑋  3 /𝑋  3  1,                      (26) 

we reduce (23) to the following expressions 
for 𝑆/ 𝑋  2  𝑋  3  and 𝑆/ 𝑋  
2  𝑋  3  

𝑆/ 𝑋  2  𝑋  3  𝑋 3  𝑋
3  𝑋 3 ,                          (27) 

𝑆/ 𝑋  2  𝑋  3  𝑋 3  𝑋 3 ∨
 𝑋 3  𝑋 3  𝑋 3  𝑋 3  𝑋 3 , 
                                   (28) 

where (28) is simplified through the absorption 
of the subsuming term 𝑋 3  𝑋 3  𝑋
3  in the subsumed term  𝑋 3  𝑋 3  
(Recall that the set of literals in a subsuming 
term is a superset of the set of literals in a 
subsumed term).  Subsequently, we rewrite (24) 
as  

𝑆/ 𝑋  2   𝑿𝟑 𝟑  𝑋 3  𝑋
3  𝑋 3  ∨ 𝑿𝟑 𝟑  𝑋 3 𝑋 3 .    
                        (29) 

In retrospect, we note that the application 
of the disjointing operation (15) to (23) 
produces the following expression, which is 
simply a rearrangement of (29) 

𝑆/ 𝑋  2   𝑋 3 ∨  𝑋 3  𝑿𝟑
𝟑  𝑋 3  𝑋 3 .                                 (30) 

Now, we observe that the relations 

𝑋  3 /𝑋  2 0,                      (31) 

𝑋  2 /𝑋  2  1,                      (32) 

result from the orthogonality of 𝑋  2  to  
𝑋  3  and the fact that when we apply the 
restriction { 𝑋  2 1} to 𝑋  2
𝑋  2 ∨ 𝑋  1  then 𝑋  2 1 . 
Equations (31) and (32) lead to the replacement 
of (8a) by the following expression for 
𝑆/ 𝑋  2  

𝑆/ 𝑋  2 𝑋 3  𝑋 3  𝑋 3 ∨
 𝑋 3  𝑋 3  𝑋 3 ∨  𝑋 2  𝑋
2  𝑋 2  𝑋 2  𝑋 2 ∨  𝑋 2 𝑋
2 𝑋 2  𝑋 2  𝑋 2 .                     (33) 
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which is not a PRE, and hence we decompose it 
further using the orthonormal expansion set   
𝑋  2 , 𝑋  2 , 𝑋  3 , namely 

𝑆/ 𝑋  2 𝑋  2  (𝑆/ 𝑋  2  𝑋  2   ∨
 𝑋  2  (𝑆/ 𝑋  2  𝑋  2  ∨ 𝑋  3  (𝑆/
 𝑋  2  𝑋  3 .                                        (34) 

Now, we utilize the relations 

𝑋  3 /𝑋  2 0,                       (35) 

𝑋  2 /𝑋  2  0,                      (36) 

to apply the restriction { 𝑋  2 1} to 
(33), so as to discover that 

 𝑆/ 𝑋  2 𝑋  2 0.                      (37) 

Next, we use the relations 

𝑋  3 /𝑋  2 0,                       (38) 

𝑋  2 /𝑋  2  1,                       (39) 

to apply the restriction { 𝑋  2 1} to (33), 
and hence  reduce it to the following expression 
for 𝑆/ 𝑋  2 𝑋  2  

𝑆/ 𝑋  2  𝑋  2
 𝑋 2  𝑋 2  𝑋 2  𝑋 2  

∨ 𝑋 2  𝑋 2  𝑋 2 𝑋 2 ,       (40) 

which is not a PRE, but can be converted to 
such an expression as 

𝑆/ 𝑋  2 𝑋  2  𝑋 2 𝑋 2 ∨
𝑿𝟐 𝟐  𝑋 2  𝑋 2  𝑋 2 .        (41) 

Now, we utilize the relations 

𝑋  3 /𝑋  3 1,                      (42) 

𝑋  2 /𝑋  3 1,          (43) 

to apply the restriction { 𝑋  3 1} to (33), 
and hence reduce it to the following expression 
for 𝑆/ 𝑋  2 𝑋  3  

𝑆 𝑆/ 𝑋  2 𝑋  3
𝑋 3  𝑋 3

∨  𝑋 3  𝑋 3  

∨ 𝑋 2  𝑋 2  𝑋 2  𝑋 2  ∨
 𝑋 2  𝑋 2  𝑋 2 𝑋 2 .          (44) 

which is not a PRE, and hence we decompose it 
further using the following orthonormal 
expansion set that involves two variables: 
𝑋 3 , 𝑋 3 𝑋 3 , 𝑋 3 𝑋 3 . 

The decomposition involves the three 
subfunctions 

𝑆 / 𝑋 3  𝑋 3 𝑋 3  ∨ 𝑋 3 ∨
𝑋 2  𝑋 2  𝑋 2  𝑋 2  ∨ 𝑋
2 𝑋 2 𝑋 2  𝑋 3  ∨  𝑋
2  𝑋 2  𝑋 2 ,                                   (45)                    

𝑆 /𝑋 3 𝑋 3  𝑋 3  ∨ 0 ∨
𝑋 2  𝑋 2  𝑋 2  ∨ 𝑋 2  𝑋 2 /
𝑋 3 𝑋 2 𝑋 2  𝑋 3  ∨
 𝑋 2  𝑋 2  𝑋 2 ,                        (46) 

𝑆 /𝑋 3 𝑋 3 𝑋 2  𝑋 2  /𝑋
3  𝑋 2  𝑋 2  ∨ 𝑋 2  𝑋 2 /𝑋
3  𝑋 2 𝑋 2 𝑋 2 𝑋 2 /𝑋
3 ∨ 𝑋 2 /𝑋 3  𝑋 2  𝑋 2 .    (47)                   

and hence (44) can be reduced to the PRE 
form (taking into consideration that 𝑋
3 𝑋 2 /𝑋 3  𝑋 2  since 𝑋 2 𝑋 2 /
𝑋 3  0)   𝑋 2 /𝑋 3  

𝑆/ 𝑋  2 𝑋  3 𝑋 3 ∨  𝑋
3 𝑋 3 𝑋 3 ∨ 𝑋 2  𝑋
2  𝑿𝟓 𝟑 𝑋 2 ∨ 𝑋 2 𝑋 2 𝑋
3 ∨ 𝑿𝟐 𝟐 𝑋 2  𝑋 2  𝑋 2 .      48)                 

Combining (34), (37), (41) and (48), we 
obtain the following PRE for 𝑆/ 𝑋  2  

𝑆/ 𝑋  2  𝑋  2  (𝑋 2 𝑋 2 ∨
𝑋 2  𝑋 2  𝑋 2  𝑋 2  

 ∨ 𝑋  3  ( 𝑋 3 ∨ 𝑋 3 𝑋
3 𝑋 3 ∨ 𝑋 2  𝑋 2  𝑋
3 𝑋 2 ∨ 𝑋 2 𝑋 2 𝑋 3 ∨
𝑋 2 𝑋 2  𝑋 2  𝑋 2 .            (49) 

Now, we express 𝑆  𝑆/ 𝑋  3   as 

𝑆 𝑆/ 𝑋  3 𝑋 3  ∨  𝑋 3    
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∨ 𝑋 3  𝑋 3  𝑋 3  𝑋 3  𝑋
3  𝑋 3 ∨  𝑋 2  𝑋 2  𝑋
2   𝑋 2  ∨ 𝑋 2  𝑋 2  𝑋
2  𝑋 2  ∨  𝑋 2  𝑋 2  𝑋
2  𝑋 2  𝑋 2 ∨ 𝑋 2  𝑋 2  𝑋
2 𝑋 2  𝑋 2  

𝑋 3  ∨  𝑋 3  ∨  𝑋 2  𝑋
2  𝑋 2   𝑋 2  ∨  𝑋 2  𝑋
2  𝑋 2  𝑋 2  ∨  𝑋 2  𝑋
2  𝑋 2  𝑋 2  𝑋 2 ∨  𝑋 2  𝑋
2 𝑋 2 𝑋 2  𝑋 2 .                      (50) 

which is not a PRE, and hence we decompose it 
further using the following orthonormal 
expansion set that involves two variables: 
𝑋 3 , 𝑋 3 𝑋 3 , 𝑋 3 𝑋 3 . 

The decomposition involves the three 
subfunctions 

𝑆 / 𝑋 3  1,                      (51) 

𝑆 /𝑋 3 𝑋 3 1,                     (52) 

𝑆 /𝑋 3 𝑋 3 𝑋 2 /𝑋
3  𝑋 2 /𝑋 3  𝑋 2  𝑋 2   

∨ 𝑋 2  𝑋 2 /𝑋 3 𝑋 2
/𝑋 3  𝑋 2  

∨ 𝑋 2  𝑋 2
/𝑋 3  𝑋 2  𝑋 2  𝑋 2  

∨  𝑋 2  𝑋 2
/𝑋 3  𝑋 2 𝑋 2  𝑋 2  

𝑋 2 /𝑋 3 𝑋 2 /𝑋 3  𝑋
2   𝑋 2  ∨ 𝑋 2   𝑋 2 ) ∨  𝑋
2  𝑋 2 /𝑋 3 ∨ 𝑋 2 /𝑋
3  𝑋 2  𝑋 2  𝑋 2 .         (53)  

Now, we rewrite (53) in the PRE form 

𝑋 3 𝑋 3  𝑆 /𝑋 3 𝑋 3  

𝑋 2  𝑋 2  𝑋 2   𝑋 2  ∨  𝑿𝟒 𝟐   
∨  𝑿𝟒 𝟐   𝑿𝟖 𝟐  𝑋 2   𝑋 2 ) ∨
 𝑋 2  𝑋 2 𝑿𝟑 𝟐 ∨ 𝑿𝟐
𝟐 𝑋 2  𝑋 2  𝑋 2  𝑋 2 .         (54)  

Utilizing (51), (52) and (54), we obtain 
𝑆/ 𝑋  3  in PRE form as 

𝑆/ 𝑋  3 𝑋 3 ∨ 𝑋 3  𝑋 3  ∨ 

𝑋 2  𝑋 2  𝑋 2   𝑋 2  ∨  𝑋 2   
∨  𝑋 2   𝑋 2  𝑋 2   𝑋 2 ) 

 ∨  𝑋 2  𝑋 2 𝑋 2 ∨ 𝑋
2 𝑋 2  𝑋 2  𝑋 2  𝑋 2 .     (55) 

The final required PRE expression is 
obtained via (20), (30), (49) and (55) 

𝑆  𝑋  2   (𝑋 3  ∨  𝑋 3  𝑋
3   𝑋 3  𝑋 3     ∨   

 𝑋  2   ( 𝑋  2  (𝑋 2 𝑋 2 ∨ 𝑋
2  𝑋 2  𝑋 2  𝑋 2  

 ∨  𝑋  3  ( 𝑋 3 ∨ 𝑋 3 𝑋
3  𝑋 3 ∨ 𝑋 2  𝑋 2  𝑋
3 𝑋 2 ∨ 𝑋 2 𝑋 2 𝑋 3 ∨
𝑋 2 𝑋 2  𝑋 2  𝑋 2     ∨   

𝑋  3  (𝑋 3  ∨  𝑋 3  𝑋 3 ∨ 

𝑋 2  𝑋 2  𝑋 2   𝑋 2  ∨  𝑋 2   
∨  𝑋 2   𝑋 2  𝑋 2   𝑋 2 ) 

 ∨  𝑋 2  𝑋 2 𝑋 2 ∨ 𝑋
2 𝑋 2  𝑋 2  𝑋 2  𝑋 2 .    (56) 

This PRE is converted, on a one-to-one 
basis, into an expectation, by replacing each 
Boolean variable and Boolean operator by its 
arithmetic counterpart, namely  

𝐸 𝑆  𝐸 𝑋  2   (𝐸 𝑋 3  𝐸 𝑋
3  𝐸 𝑋 3  𝐸 𝑋 3  𝐸 𝑋 3       

 𝐸 𝑋  2   ( 𝐸 𝑋  2  (𝐸 𝑋 2  𝐸 𝑋
2 𝐸 𝑋 2 𝐸 𝑋 2  𝐸 𝑋
2  𝐸 𝑋 2  𝐸 𝑋  3  (E{ 𝑋
3  𝐸 𝑋 3  𝐸 𝑋 3  𝐸 𝑋
3 𝐸 𝑋 2  𝐸 𝑋 2  𝐸 𝑋
3  𝐸 𝑋 2 𝐸 𝑋
2 𝐸 𝑋 2  𝐸 𝑋 3 𝐸 𝑋
2  𝐸 𝑋 2  𝐸 𝑋 2  𝐸 𝑋 2        
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𝐸 𝑋  3  (𝐸 𝑋 3  𝐸 𝑋
3  𝐸 𝑋 3  

𝐸 𝑋 2 𝐸 𝑋 2  𝐸 𝑋 2  𝐸 𝑋 2  
𝐸 𝑋 2   𝐸 𝑋 2  𝐸 𝑋 2  𝐸 𝑋

2   𝐸 𝑋 2 ) 𝐸 𝑋 2 𝐸 𝑋 2 𝐸 𝑋
2 𝐸 𝑋 2 𝐸 𝑋 2  𝐸 𝑋 2 𝐸 𝑋
2 𝐸 𝑋 2 .                                             (56a) 

In retrospect, we note that our choice of 
the decomposition set 𝑋  2 , 𝑋  2 , 𝑋  

3  in (20) is warranted by the definite 
simplification achieved via the Boolean 
quotients in (21), (22), (25), (26), (31), and (32). 
Had we employed a smaller decomposition set 
𝑋  2 , 𝑋  2 , we would have 

encountered a Boolean quotient of the form 
(𝑋  3 /𝑋  2 ), which has no simple 
form. Similarly, if we had adopted, instead, the 
two-element decomposition set 𝑋  3 ,
𝑋  3 , we would have obtained a Boolean 
quotient of the form (𝑋  2 /𝑋  3 ), 
which also does not possess a simple form.  

6. Inclusion-Exclusion for Composite PRE 
Paths 

The literature abounds with innovative 
attempts to mitigate the shortcomings of the 
multi-state inclusion-exclusion (MS-IE) 
procedure [11, 29–32]. This section offers yet 
another attempt along this direction. The 
success expression (8a) is rewritten in the 
factored form 

𝑆 ℜ  ∨  ℜ ∨  ℜ 𝑋 3 ∨ 𝑋
3    𝑋 3 ∨ 𝑋 3  𝑋 3  

  ∨  𝑋 2   𝑋 2  𝑋 2  𝑋 2  𝑋
2   𝑋 2 ∨ 𝑋 2  

∨ 𝑋 2  𝑋 2  𝑋 3   𝑋 2  𝑋
2  ∨  𝑋 2  𝑋 2 ),                            (57) 

which comprises three rather than eight 
implicants or paths, and hence it has an IE 
formula of just 7 (rather than 255) terms, 
namely  

𝐸 𝑆 𝐸 ℜ 𝐸 ℜ
𝐸 ℜ 𝐸 ℜ ℜ 𝐸 ℜ ℜ 𝐸 ℜ ℜ
𝐸 ℜ ℜ ℜ .                                               (58) 

However, this dramatic reduction in the 
number of terms comes at a price, namely, the 
implicant products in (58) are not necessarily in 
PRE form, and must be recast as such. 
Fortunately, the required cost is very modest 
indeed. The first implicant is a product of two 
statistically independent expressions, each of 
which is easily converted into a PRE, namely   

ℜ 𝑋 3 ∨ 𝑿𝟐 𝟑 𝑋 3       𝑋
3 ∨  𝑋 3  𝑿𝟕 𝟑  𝑋 3 .             (59) 

Likewise, the two other implicants are 
easily converted into PREs, viz. 

ℜ 𝑋 2   𝑋 2  𝑋 2  𝑋
2  𝑋 2   𝑋 2 ∨ 𝑿𝟐 𝟐 𝑋 2 .             
(60) 

ℜ 𝑋 2  𝑋 2 𝑋 3                      

     𝑋 2  𝑋 2  ∨  𝑿𝟒 𝟐 ∨ 𝑿𝟒
𝟐 𝑿𝟖 𝟐 𝑋 2  𝑋 2 ).    (61) 

Products of these implicants inherit the 
PRE property without further processing. They 
just need simplification via the domination 
rules (11)  

ℜ  ℜ 𝑋 3 ∨ 𝑿𝟐 𝟑 𝑋
3    𝑋 2 ∨ 𝑿𝟐 𝟐 𝑋 2  𝑋 2  

    𝑋 2  𝑋 2  𝑋 2  𝑋 2   𝑋
3 ∨ 𝑿𝟕 𝟑 𝑋 3  𝑋 3  

𝑋 3 ∨ 𝑿𝟐 𝟑 𝑋 3  𝑋
2   𝑋 2  𝑋 2   

 𝑋 3  𝑋 2 ∨ 𝑋 3   𝑿𝟕 𝟐  𝑋 3 .         
                                   (62) 

ℜ  ℜ 𝑋 3 ∨ 𝑿𝟐 𝟑 𝑋
3   𝑋 3 ∨  𝑋 3  𝑿𝟕 𝟑  𝑋 3 ) 
𝑋 2  

𝑋 2  𝑋 2 ∨ 𝑿𝟒 𝟐 ∨ 𝑿𝟒
𝟐 𝑿𝟖 𝟐  𝑋 2  𝑋 2 )  𝑋 2 𝑋
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3  𝑋 3 𝑋 2 ∨ 𝑿𝟐 𝟐  𝑋
3   𝑋 3   

      𝑋 2  𝑋 2  ∨ 𝑿𝟒 𝟐 ∨ 𝑿𝟒
𝟐 𝑿𝟖 𝟐  𝑋 2  𝑋 2 ).   (63) 

ℜ  ℜ  𝑋 2   𝑋 2  𝑋 2  𝑋
2  𝑋 2   𝑋 2 ∨ 𝑿𝟐 𝟐 𝑋 2  
𝑋 2  

 𝑋 2  𝑋 3  𝑋 2  𝑋 2 ∨
𝑿𝟒 𝟐 ∨ 𝑿𝟒 𝟐 𝑿𝟖 𝟐  𝑋 2  𝑋

2 ) 𝑋 2 𝑋 2  𝑋 2  𝑋
2   𝑋 2 𝑋 3   𝑋 2 . (64) 

ℜ ℜ ℜ  ℜ ℜ ℜ ℜ ℜ ℜ  
𝑋 3 ∨ 𝑿𝟐 𝟑 𝑋 3  𝑋 2 𝑋

2  𝑋 2   𝑋 3  𝑋 2 ∨ 𝑋
3  𝑿𝟕 𝟐  𝑋 3  𝑋 3 𝑋 2 ∨
𝑿𝟐 𝟐  𝑋 3   𝑋 3   

      𝑋 2  𝑋 2  ∨ 𝑿𝟒 𝟐 ∨ 𝑿𝟒
𝟐 𝑿𝟖 𝟐  𝑋 2  𝑋 2 ) 

𝑋 2 𝑋 2  𝑋 2  𝑋 2   

 𝑋 2 𝑋 3  𝑋 2  

𝑋 3 𝑿𝟑 𝟐 ∨ 𝑿𝟐 𝟐 𝑋 3  
𝑋 2  𝑋 2   𝑋 2 𝑋 3   𝑋 2 .
                       (65) 

7. Discussion 

In this paper, we presented four methods 
(in descending order of computational 
complexity) for solving the problem of our 
running example. Table 3 indicates that our four 
methods agree on a value of 0.9819022224313, 
which is a more precise version for the value of 
network reliability (0.981902) that was obtained 
earlier by Lin et al. [2]. Of course, the exaggerated 
precision of the values in Table 3 is not 
practically warranted, but it instils confidence in 
the correctness of the various computational 
methods. 

 

Table 3. Comparison of numerical results obtained for the same running example 

Method Numerical Result 

RSDP (Lin et al., 2014) 0.981902 

Conventional IE (Equation (9)) 0.98190222243132085 

PRE (Table 2) 0.981902222431299 

MS-BS expansion (Equation (56a)) 0.981902222431299294 

IE improved with PRE (Equation (58)) 0.9819022224312988074 

 

8. Conclusions 

This paper is a continuation of our earlier 
efforts to extend the concept of the sum of 
disjoint products (SDP) in the domain of multi-
state reliability to the more encompassing one 
of a probability-ready expression (PRE). The 
paper served as an exposition of the inter-
relationships among the multi-state concepts 
MS-IE, MS-PRE, and MS-BS. This exposition 
was obtained by applying four related standard 
or novel approaches to the same problem of 

multi-state network reliability. Each of these 
approaches recovered the same result obtained 
by the RSDP method. 
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ة للاح اه ات ال ع عاد وال ل والاس أ ال ا ب م ك بالارت ن -لال ومف شان
الات دة ال ع ة م ل ع   لأجل ال

اشة وعلي م علي رش       مع ح ع

، ل ع الع سة، جامعة ال ة اله ل ات،  اس سة ال ة وه ائ ه سة ال  ق اله
ة،  ة21589ج د ع ة ال ة الع ل   ، ال

arushdi@kau.edu.sa 

ل اد ن م . ال ال ات اب اح ة ل قل ألة ال ة لل رة م رقة ص ه ال اول ه ت
ال  اث، أ اح ه الأح ات ال له ش ات م غ ل ل قع دالة الف عادل ت اث، وه ما  الأح
ات  غ ا مع ال روسة ه ألة ال ه ال رة ه عامل ص . ت اح اوًة لـل ه م ل ه ن دالة الف أن ت

دة ا ع الات (ش وع م دة ال ع ل م ص ة ت ة ش ل ب إلى مع ل ال ال ، ح  الاح ل
دة  ع احات م لالة ال ها ب ع ع ة ی ال ة ال ائ الة ث امها ب اح ن صف ن ة ی ح)، وهي ش
لالة ش و ع ح  رة أعلاه ب ألة ال راسة ال اهج ل رقة أرعة م اق ال ام. ت اص ال ال لع
ارات  ل ال ي ت ة، ال اتها الأول ام ل ل الة الف ة ب رة أصغ احها في ص ف ن ة، ُع اس
ل  أ ال ام م اس اس  اق حل  از وت إ رقة  د ال لة. ت ة ذات ال ة لل الأصغ

الات (ش ب د ال ع عاد م الات (ع ج -والاس د ال ع ال م اء تع جاه للاح إن ع ح) و
م ع ج ح-ح سعة مفه اء وت ق ا في اس قي ذ ال إلى -ع ح). ن ال ال ع ح م ال

ائي، على  قي الع ع ال اش لل ل ال امه لل ، وفي اس د ال ع قي م ال ال ال
ة  ات ال غ ع ال ة م خلال تغ ج ا ائي، ب قع إح ل ت ، إلى ش اح أساس واح ل

ي إلى ت ق (دال ا ال ه ابي ب ع ال ب وال ال ال ل اس ة، و ائ قعاتها الإح
ة  فا اءی م وأك  ف إج رقة في ت ه ال ة له ئ ة ال اه ل ال ل).  ت ف والف الع

ل ك ب اء الأول مف م الإج ة.  ل ألة ال عامل مع ال ا -لل الات، ب د ال ع ن م شان
أ ش ب اني م اء ال ة) - الإج للة أو ال ة (ال ارات الأصغ د أقل م ال ع ح على ع

غة ع ج ح لفة) على ص أقل ت ي ت وضعها ( ي ت -ال ائ الأرع ال ح ال ض ع ح.  ی ت
ة  ف ال ة أك دقة ل ها ن ل م ج  ة، وق أن راسة حالة ح ل ل ال رم مف ها  اق م
ة (ج ع ض  ا ات ال و عاود لل ع ال قة ال قًا  ها م ل عل ي ت ال ة ال د الع
ة  ل ع ائل ال ة ل ة تعل ف معال عى إلى ت ا م  ءًا م ن رقة ج ه ال ن). تع ه

ع جة م ال وال جة ال ة ب ن ة وثا ادلة واض اء علاقة م الات، ولى إن دة ال ع دة م
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فا  ة لل ة و ادات  ة هي ام ة ال ی فا ع أك على أن ال الات م خلال ال ال
 .ذات ال

ة اح ف ات ال ل ة،: ال ال اه للاح ع ال عاد، ال ل والاس ة، ال ة ال ل لم مع ك ب -ف
ع  ، ال د ال ع الات، ال م د ال ع ام م ن، ال ، ششان م ة ال

الات دة ال ع ل م   .ال

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  

  

  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


