Homework on boiling and condensation, Ch. 10 of Incropera 7th Edition textbook

Problem	Modification	Answers
10.12	Change T _s from 115 to 117.0 °C	Power=12022 W,
		$\dot{m} = 5.327 * 10^{-3} kg/s,$
		$ratio = q/q_{max} = 0.5396$
10.14a	Change q_s'' to be 85% of q_{max}'' instead of 50%	$q'' = 2.393 * 10^5 W/m^2$,
		T_{s} =-18.0 °C
10.30	Change T _s to 600 °C	
	10.30 a Calculate the minimum film pool boiling heat	$h_{conv}=167.6 \text{ W/m}^2\text{K}, h_{rad}=57.31$
	flux (at Leidenfrost point)	W.m ² .K,
	10.30 b What will be the surface temperature T_s at	q=1323 W.
	Leidenfrost point when considering only convective	10.30 a $q_{min} = 19007 \frac{W}{R}$. K,
	film boiling	10 30 b T.–196 1 °C
	10.30 c What will be the corresponding surface	10.30 c $T_s=105.1$ C
	temperature and the excess temperature if one	10.50 C 15-105.2 C
	assumes the heat flux at Leidenfrost point is operating	
	in the nucleate pool boiling region.	

Additional problem

Starting with equation \bar{h}_L for laminar film condensation on vertical plate (as given by Eq. 10.31), drive equation 10.38 which is

$$\overline{Nu}_{L} = \frac{\overline{h}_{L} (\nu_{l}^{2}/g)^{1/3}}{k_{l}} = 1.47 R e_{\delta}^{-1/3}$$

Where Re_{δ} is given by

$$Re_{\delta} = \frac{4g\rho_l(\rho_l - \rho_v)\delta^3}{3\mu_l^2}$$

Notice that from Eq. (10.26), one can write

$$\delta^4 = \frac{4k_l\mu_l(T_{sat} - T_s)L}{g\rho_l(\rho_l - \rho_v)h'_{fg}}$$

Also use the approximation

$$\rho_l(\rho_l - \rho_v) \approx \rho_l^2$$