$\mathbb{K} \mathbb{N} G \mathbb{A} \mathbb{B D} \mathbb{D} \mathbb{A} \mathbb{Z} \mathbb{Z} \mathbb{Z}$ UNIVERSSITY
DEPARTMENT OF MATHEMATICS
PhD Entrance Exam
Second Semester 1440
Maximim Time: Three Hours

Name:
Student number
Field of specialization

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Note: Please answer 4 questions of 8.

Name:	
Student Number:	

Q1) Find the equilibrium points, determine their stability and classify their type (node, focus, saddle,...)
(a)

$$
\begin{aligned}
& \dot{x}=y^{2}-3 x+2, \\
& \dot{y}=x^{2}-y^{2} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=\mu\left(1-x^{2}\right) y-x, \quad|\mu|<2
\end{aligned}
$$

Name:	
Student Number:	

Q2) (a) Find the values of σ so that the following boundary value problem has non-trivial solutions:

$$
\begin{aligned}
& \left.\frac{d^{2} u}{d t^{2}}+(\sigma-1)\right) u=0 \\
& u(0)=0, u(1)=0
\end{aligned}
$$

(b) Without solving, find the region through which the solution curve of the following problem passes:

$$
\begin{aligned}
& \frac{d y}{d x}=(y+1)(y-2), \\
& y(0)=-4
\end{aligned}
$$

Name:	
Student Number:	

Q3) Use Gaussian elimination method to solve the linear system

$$
\left[\begin{array}{ccc}
4 & 2 & 3 \\
2 & -4 & -1 \\
-1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
1 \\
-5
\end{array}\right]
$$

Name:	
Student Number:	

Q4) a) Show that the space l^{p} is complete but not Hilbert space with $\mathrm{p} \neq 2$.
b) Show that the dual space of \mathbb{R}^{n} is \mathbb{R}^{n}.
c) Show that every finite dimensional subspace Y of a normed space X is complete.

Name:	
Student Number:	

Q5) Let λ denote the Lebesgue measure on \mathbb{R}, λ^{*} denote the Lebesgue outer measure on \mathbb{R}. Let \mathcal{M} denote the σ - algebra of Lebesgue measurable subsets of \mathbb{R}. Let E be subset of \mathbb{R}. You may use the fact that if $E \in \mathcal{M}$, then for every $\epsilon>0$, there is an open set $O \supseteq E$ such that $\lambda(O-E)<\epsilon$.
(a) If $E \in \mathcal{M}$. Show that for each $\epsilon>0$, there is a closed set F with $F \subset E$ and $\lambda(E-F)<\epsilon$.
(b) Suppose that for each $\epsilon>0$, there is an open set O with $E \subset O$ and $\lambda^{*}(O-E)<\epsilon$. Prove that $E \in \mathcal{M}$.

Name:	
Student Number:	

Q6) (a) For any complex number z, show that $z \bar{z}=|z|^{2}$.
(b) Find the real and imaginary parts of the complex number $\frac{5 i}{2+i}$.
(c) State the de Moivre's Formula.

Name:	
Student Number:	

Q7) (a) Prove or disprove: Every group of order 99 is solvable.
(b) Show that every maximal ideal in a commutative ring with unity is a prime ideal.

Name:	
Student Number:	

Q8) Consider the set of real numbers \mathbb{R}. Define $\tau \subset \mathcal{P}(\mathbb{R})$ as follows:

$$
\tau=\{\emptyset, \mathbb{R}\} \cup\{(-x, x): x \in \mathbb{R} ; x>0\}
$$

(a) Prove that τ is a topology on \mathbb{R}.
(b) Prove that (\mathbb{R}, τ) is not T_{1}
(c) Prove that (\mathbb{R}, τ) is normal.

