KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS PhD Entrance Exam

Second Semester 1440 Maximim Time: Three Hours

Name:_____

Student number

Field of specialization

ſ	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Note : Please answer 4 questions of 8.

Name:	
Student Number:	

Q1) Find the equilibrium points, determine their stability and classify their type (node, focus, saddle,...)(a)

$$\dot{x} = y^2 - 3x + 2,$$

$$\dot{y} = x^2 - y^2.$$

(b)

$$\dot{x} = y,$$

 $\dot{y} = \mu(1 - x^2)y - x,$ $|\mu| < 2$

Name:	
Student Number:	

Q2) (a) Find the values of σ so that the following boundary value problem has non-trivial solutions:

$$\begin{aligned} &\frac{d^2 u}{dt^2} + (\sigma - 1))u = 0,\\ &u(0) = 0, \ u(1) = 0. \end{aligned}$$

(b) Without solving, find the region through which the solution curve of the following problem passes:

$$\frac{dy}{dx} = (y+1)(y-2), y(0) = -4.$$

Name:	
Student Number:	

Q3) Use Gaussian elimination method to solve the linear system

$$\begin{bmatrix} 4 & 2 & 3 \\ 2 & -4 & -1 \\ -1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ -5 \end{bmatrix}$$

Name:	
Student Number:	

- Q4) a) Show that the space \mathbf{l}^p is complete but not Hilbert space with $\mathbf{p} \neq 2.$
 - b) Show that the dual space of \mathbb{R}^n is \mathbb{R}^n .
 - c) Show that every finite dimensional subspace Y of a normed space X is complete.

Name:	
Student Number:	

Q5) Let λ denote the Lebesgue measure on \mathbb{R} , λ^* denote the Lebesgue outer measure on \mathbb{R} . Let \mathcal{M} denote the σ - algebra of Lebesgue measurable subsets of \mathbb{R} . Let E be subset of \mathbb{R} . You may use the fact that if $E \in \mathcal{M}$, then for every $\epsilon > 0$, there is an open set $O \supseteq E$ such that $\lambda(O - E) < \epsilon$.

(a) If $E \in \mathcal{M}$. Show that for each $\epsilon > 0$, there is a closed set F with $F \subset E$ and $\lambda(E-F) < \epsilon$.

(b) Suppose that for each $\epsilon > 0$, there is an open set O with $E \subset O$ and

 $\lambda^*(O-E) < \epsilon$. Prove that $E \in \mathcal{M}$.

Name:	
Student Number:	

- Q6) (a) For any complex number z, show that $z\bar{z} = |z|^2$.
- (b) Find the real and imaginary parts of the complex number $\frac{5i}{2+i}$.
- (c) State the de Moivre's Formula.

Name:	
Student Number:	

Q7) (a) Prove or disprove: Every group of order 99 is solvable.

(b) Show that every maximal ideal in a commutative ring with unity is a prime ideal.

Name:	
Student Number:	

- Q8) Consider the set of real numbers \mathbb{R} . Define $\mathcal{T} \subset \mathcal{P}(\mathbb{R})$ as follows:
- $\tau = \{ \emptyset, \mathbb{R} \} \cup \{ (-x, x) : x \in \mathbb{R} ; x > 0 \}.$ (a) Prove that τ is a topology on \mathbb{R} .
- (b) Prove that (\mathbb{R}, τ) is not T_1
- (c) Prove that (\mathbb{R}, τ) is normal.