الاسم: الرقم الجامعي: موعد المعمل

اليوم:

الساعة:

parallel and series combination of resistors experiment

Purpose

- (1) To study resistors connected in series
- (2) To study resistors connected in parallel.
- (3) To study resistors connected in series and parallel.

Apparatus

Power Supply, 3 resistors, an ammeter, circuit wizard program

Circuits

Theory

Combinations of Resistors.

When two or more resistors (R1, R2, R3,...) are connected in series (Fig. 1) then this combination is equivalent to a single resistor of resistance R_{eq} given by equation (1).

When two or more resistors are connected in parallel (Fig. 3) then the equivalent resistance R_{eq} is given by equation (3).

١

PHYSICS 202 LAB

Exp # 2 parallel and series combination of resistors

When three or more resistors are connected in both parallel and series combinations within the same circuit (Fig. 4) then the equivalent resistance R_{eq} is given by using equation (2 &3).

The voltage between the end of the resistors is dependent on the current flows throw it

Equations

$$V=R\cdot I \quad \text{equation (1)} \qquad R_{eq}=R_1+R_2+R_3 \quad \text{series} \quad \text{equation (2)}$$

$$\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3} \quad \text{equation (3)}$$

$$P=V \; . \; I \quad \text{equation (4)} \qquad \qquad P=R \; . \; I^2 \qquad \text{equation (5)}$$

The equations symbols meaning

symbol	meaning	unit
V		
I		
R		
Req		
р		

PHYSICS 202 LAB

Exp # 2 parallel and series combination of resistors

R1=	ohr	n R2) <u> </u>	o k	nm	R3	- ol	nm
		ected in se			1111	ΝS	– Oi	1111
Г	Comin				1 ==		20	2.5
V		5	10		15		20	25
1								
For $v = 2$	0 volt	find the p	ower of	fR_1 ,	$R_2 \& R_3$			
	p		R_1 R_2			R_3		
			Т	heore	etical		Exper	rimental
F	Req		from	the e	equations		From the graph	
resistors	conne	ected in pa	arallel	Fig. 2	2			
V		5	10		15		20	25
I								
	·							
For $v = 2$	0 volt	find the p	ower of	fR_1 ,	$R_2 \& R_3$			
			R_1 R_2				R ₃	
p			11		102		103	
L		_1						
		Theoretical				Experimental		
R_{eq}			from the equations				From the graph	

PHYSICS 202 LAB

Exp # 2 parallel and series combination of resistors

resistors connected in series and parallel Fig. 3

V	5	10	15	20	25
I					

For v=20 volt find the power of R_1 , R_2 & R_3

p	R_1	R_2	R_3	

R _{eq}	Theoretical from the equations	Experimental From the graph		