

# **Course Specifications**

| Course Title: | Atmospheric Chemistry                                         |
|---------------|---------------------------------------------------------------|
| Course Code:  | ENS 318                                                       |
| Program:      | Environmental Sciences and Technology                         |
| Department:   | Environmental Sciences Department                             |
| College:      | Faculty of Meteorology, Environment and Arid Land Agriculture |
| Institution:  | King Abdulaziz University                                     |









# **Table of Contents**

| A. Course Identification                                                                    |   |
|---------------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                                | 3 |
| B. Course Objectives and Learning Outcomes                                                  |   |
| 1. Course Description                                                                       | 3 |
| 2. Course Main Objective                                                                    | 3 |
| 3. Course Learning Outcomes                                                                 | 4 |
| C. Course Content                                                                           |   |
| D. Teaching and Assessment                                                                  |   |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment<br>Methods | 4 |
| 2. Assessment Tasks for Students                                                            | 5 |
| E. Student Academic Counseling and Support5                                                 |   |
| F. Learning Resources and Facilities6                                                       |   |
| 1.Learning Resources                                                                        | 6 |
| 2. Facilities Required                                                                      | 6 |
| G. Course Quality Evaluation6                                                               |   |
| H. Specification Approval Data6                                                             |   |

# A. Course Identification

| 1. Credit hours: 3                                  |  |  |
|-----------------------------------------------------|--|--|
| 2. Course type                                      |  |  |
| a. University Colleg Department x Others            |  |  |
| b. Required Elective x                              |  |  |
| 3. Level/year at which this course is offered:      |  |  |
| 4. Pre-requisites for this course (if any): ENS 311 |  |  |
| 5. Co-requisites for this course (if any):          |  |  |
| None                                                |  |  |
|                                                     |  |  |

#### 6. Mode of Instruction (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 2                    | 100%       |
| 2  | Blended               | -                    | -          |
| 3  | E-learning            | -                    | -          |
| 4  | Distance learning     | -                    | -          |
| 5  | Other                 | -                    | -          |

#### 7. Contact Hours (based on academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1  | Lecture           | 30            |
| 2  | Laboratory/Studio | -             |
| 3  | Tutorial          | -             |
| 4  | Others (specify)  | -             |
|    | Total             | -             |

# **B.** Course Objectives and Learning Outcomes

#### **1.** Course Description

This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth's atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.

#### 2. Course Main Objective

On completion of this course, students should be able to:

- Identify the chemical components present in foods.
- perform analysis using the analytical instrumentation.

Compare between analytical methods with reference to quality control and authenticity.

# **3.** Course Learning Outcomes

|     | CLOs                                                                                                                                                                          | Aligned<br>PLOs |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1   | Knowledge and Understanding                                                                                                                                                   |                 |
| 1.1 | Predict fate of molecules and radicals under typical atmospheric conditions                                                                                                   |                 |
| 1.2 | Qualitatively explain and quantitatively compute trends in photolysis<br>rate constants with altitude, season, and time of day for molecules<br>whose photochemistry is known |                 |
| 1.3 | .3 Qualitatively predict effects of chemical perturbations on catalytic cycles producing and destroying ozone                                                                 |                 |
| 1.4 | 4 Explain basic principles of greenhouse effect and compute global warming potentials                                                                                         |                 |
| 2   | Skills :                                                                                                                                                                      |                 |
| 2.1 | Explain principles of chemical perturbations under typical atmospheric conditions.                                                                                            |                 |
| 2.2 | Judge problems associated with specified topics.                                                                                                                              |                 |
| 3   | Values:                                                                                                                                                                       |                 |
| 3.1 | Demonstrate independent role and as part of a team.                                                                                                                           |                 |
| 3.2 | Assess resources, time and cooperate with other members of the group.                                                                                                         |                 |
| 3.3 | Show results of work to others.                                                                                                                                               |                 |

#### **C.** Course Content

| No                                    | No List of Topics                                         |   |
|---------------------------------------|-----------------------------------------------------------|---|
| 1                                     | 1 Composition, Structure, and Transport in the Atmosphere |   |
| 2                                     | 2 Photochemistry, Kinetics,                               |   |
| 3 Stratospheric Ozone                 |                                                           | 2 |
| 4 Tropospheric Ozone                  |                                                           | 8 |
| 5 Aqueous Aerosols in the Troposphere |                                                           | 8 |
| 6 Global Climate Change               |                                                           | 8 |
| Total                                 |                                                           |   |

# **D.** Teaching and Assessment

# **1.** Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | <b>Course Learning Outcomes</b>                         | Teaching Strategies                                                                                      | Assessment Methods                                                                     |
|------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.0  | Knowledge and Understanding                             |                                                                                                          |                                                                                        |
| 1.1  | Recognize competition betwe thermodynamics and kinetics | <ul> <li>In-class lecturing</li> <li>Homework<br/>assignments.</li> <li>Writing field report.</li> </ul> | <ul> <li>In-class discussion.</li> <li>Periodic, mid-term, and final exams.</li> </ul> |

| Code | Course Learning Outcomes                                                                                                                                                | Teaching Strategies                                                                                      | Assessment Methods                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|
|      |                                                                                                                                                                         |                                                                                                          |                                              |
| 1.2  | Apply kinetics rules (lifetimes,<br>pseudo-first order, steady state<br>approximation, pressure dependent<br>rate constants, Arrhenius/reaction<br>coordinate diagrams) |                                                                                                          | <i></i>                                      |
| 1.3  | Compare stability of organic radicals'<br>chemical equilibria liquid-vapor<br>equilibria conservation of energy.                                                        |                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,      |
| 1.4  | Recognize adiabatic expansions and compressions Beer-Lambert law                                                                                                        | <i>m m m m m m</i> m                                                                                     | <i></i>                                      |
| 2.0  | Skills                                                                                                                                                                  |                                                                                                          |                                              |
| 2.1  | Explain principles of Graph numerical data and interpret graphical data.                                                                                                | <ul> <li>In-class lecturing</li> <li>Homework<br/>assignments.</li> <li>Writing field report.</li> </ul> | • Periodic, mid-term,<br>and final<br>exams. |
| 2.2  | Extract numerical data from a statement of a problem, identify needed information, and identify the equations necessary to solve the problem                            | III III III III III III                                                                                  | III III III III III III III                  |
| 3.0  | Values                                                                                                                                                                  |                                                                                                          |                                              |
| 3.1  | Share duty as part of a team.                                                                                                                                           | <ul> <li>In-class lecturing</li> <li>Homework<br/>assignments.</li> <li>Writing field report.</li> </ul> | • Periodic, mid-term,<br>and final<br>exams. |
| 3.2  | Adapt to resources, commit to time<br>and cooperate with other members of<br>the group.                                                                                 | m m m m m m m                                                                                            | III III III III III III III                  |

#### 2. Assessment Tasks for Students

| # | Assessment task* | Week Due | Percentage of Total<br>Assessment Score |
|---|------------------|----------|-----------------------------------------|
| 1 | Periodic exams   | monthly  | 15%                                     |
| 2 | Midterm exam     | 8        | 20%                                     |
| 3 | Lab. Exam        | 15       | 25%                                     |
| 4 | Homeworks        | monthly  | 10%                                     |
| 5 | Final exam       | 16       | 30%                                     |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

# E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

6 hours/week

# F. Learning Resources and Facilities

| Required Textbooks                | Wayne, R. P. Chemistry of Atmospheres, 3rd edition, 2000. Moon QC879.6 .W39 2000                                             |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Essential References<br>Materials | Houghton, J. Global Warming: The Complete Briefing. Moon and<br>Sci-Tech QC981.8.G56 H68 2004 (see also 1st and 3rd edition) |
| Electronic Materials              | Internet websites.                                                                                                           |
| Other Learning<br>Materials       |                                                                                                                              |

#### **1.Learning Resources**

#### 2. Facilities Required

| Item                                                                                                                      | Resources                                                                            |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Accommodation<br>(Classrooms, laboratories, demonstration<br>rooms/labs, etc.)                                            | Lecture room with max 20 seats.                                                      |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.)                                            | Laptop and data show for teaching and demonstration of topics related to the course. |
| Other Resources<br>(Specify, e.g. if specific laboratory<br>equipment is required, list requirements or<br>attach a list) |                                                                                      |

# **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues | Evaluators                                                                                      | Evaluation Methods                                                             |
|----------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Course contents covering   | Students (direct through<br>meetings, or indirect using<br>the central online<br>questionnaires | Online questionnaire and<br>Students- faculty meetings<br>(advisory committee) |
| Quality of teaching        |                                                                                                 | Online questionnaire and<br>students- faculty meetings<br>(advisory committee) |
| Office hours commitment    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                         | Online questionnaire and<br>Students- faculty meetings<br>(advisory committee) |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

# **H. Specification Approval Data**

| Council / Committee | END Dept. Council and Faculty Academic Accreditation Committee |
|---------------------|----------------------------------------------------------------|
| Reference No.       |                                                                |

|--|